-
Notifications
You must be signed in to change notification settings - Fork 1
/
CSM_V0.8.py
312 lines (288 loc) · 13.8 KB
/
CSM_V0.8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#coding=utf-8
#@author:xiaolin
#@file:CSM_V0.8.py
#@time:2016/9/7 14:45
import time,timeit
import pandas as pd
import matplotlib.pylab as plt
import seaborn as sns
import numpy as np
from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor
from sklearn.preprocessing import OneHotEncoder
from sklearn.cross_validation import train_test_split
from sklearn.metrics import roc_curve,roc_auc_score,classification_report
from sklearn.pipeline import make_pipeline
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.feature_selection import SelectFromModel
from pandas import DataFrame
from sklearn.learning_curve import learning_curve
from sklearn.ensemble import BaggingRegressor
from sklearn.externals import joblib
def Importance_Plot(df_2, label):
'''
:param df: DATAFRAME style
:param label: y vector
:param threshold: jude threshold
:return: figure
'''
import numpy as np
import matplotlib.pylab as plt
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.feature_selection import SelectFromModel
import pandas as pd
model = ExtraTreesClassifier()
data1 = np.array(df_2)
model.fit(data1, label)
importance = model.feature_importances_
std = np.std([importance for tree in model.estimators_], axis=0)
indices = np.argsort(importance)[::-1]
namedata = df_2
# Print the feature ranking
print("Feature ranking:")
importa = pd.DataFrame(
{'importance': list(importance[indices]), 'Feature name': list(namedata.columns[indices])})
print (importa)
# Plot the feature importances of the forest
plt.figure()
plt.title("Feature importances")
plt.bar(range(data1.shape[1]), importance[indices],
color="g", yerr=std[indices], align="center")
plt.xticks(range(data1.shape[1]), indices)
plt.xlim([-1, data1.shape[1]])
plt.grid(True)
plt.show()
modelnew = SelectFromModel(model, prefit=True)
print ('Select feature num:', modelnew.transform(data1).shape[1])
def learn_curve_plot(estimator,title,X,y,cv=None,train_sizes=np.linspace(0.1,1.0,5)):
'''
:param estimator: the model/algorithem you choose
:param title: plot title
:param x: train data numpy array style
:param y: target data vector
:param xlim: axes x lim
:param ylim: axes y lim
:param cv:
:return: the figure
'''
plt.figure()
train_sizes,train_scores,test_scores=\
learning_curve(estimator,X,y,cv=cv,train_sizes=train_sizes)
'''this is the key score function'''
train_scores_mean=np.mean(train_scores,axis=1)
train_scores_std=np.std(train_scores,axis=1)
test_scores_mean=np.mean(test_scores,axis=1)
test_scores_std=np.std(test_scores,axis=1)
plt.fill_between(train_sizes,train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std,alpha=0.1,color='b')
plt.fill_between(train_sizes,test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std,alpha=0.1,color='g')
plt.plot(train_sizes,train_scores_mean,'o-',color='b',label='training score')
plt.plot(train_sizes,test_scores_mean,'o-',color='g',label='cross valid score')
plt.xlabel('training examples')
plt.ylabel('score')
plt.legend(loc='best')
plt.grid('on')
plt.title(title)
plt.show()
def corr_analysis(data):
corr=data.corr()
#Generate a mask for the upper triangle
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
f, ax = plt.subplots(figsize=(20, 20))
# Generate a custom diverging colormap
cmap = sns.diverging_palette(110, 10,as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=1,linewidths=.5,
cbar_kws={"shrink": .6},annot=True,annot_kws={"size":8} )
plt.xticks(rotation=90)
plt.yticks(rotation=0)
plt.show()
def Desc_Scaler(data, des=[0.95], feature_range=(0, 1),detail=False):
from sklearn import preprocessing
import pandas as pd
from pandas import DataFrame
describe=data.describe(des)
if detail==True:
print (describe)
y=describe.shape[1]
x=[]
min_max_scaler = preprocessing.MinMaxScaler(feature_range=feature_range)
for i in range(y):
threshold=describe.ix[-2,i]
# print ('Threshold:',threshold)
minval=describe.ix[3,i]
maxval=describe.ix[-1,i]
temp = np.array(data.ix[:,i]).ravel()
# use the map function to discrete data
def juge1(x): # define the function to discrete
if x > threshold:
return threshold
elif x < 0:
return 0
else:
return x
def juge2(x): # define the function to discrete
if x > threshold:
return threshold
else:
return x
if minval==-1:
if maxval==1 or maxval==0:
x_temp = temp
else:
x_temp = list(map(juge2, temp))
else:
x_temp = list(map(juge1, temp))
x.append(x_temp)
data_new = pd.DataFrame(np.matrix(x).T, index=data.index, columns=data.columns)
# print data_new.head()
# x=min_max_scaler.fit_transform()
df_scaler = min_max_scaler.fit_transform(data_new)
# df_scaler=np.round(df_scaler,3)
data_new = pd.DataFrame(df_scaler, index=data.index, columns=data.columns)
# print data_new.head()
# for i in range(y):
# sns.distplot(data_new.ix[:,i])
# plt.show()
return data_new
def Report(label_tst,pre):
count_tn,count_fp,count_fn,count_tp=0,0,0,0
for i in range(len(label_tst)):
if label_tst[i]==0:
if pre[i]<0.5:
count_tn+=1
else:
count_fp+=1
else:
if pre[i]<0.5:
count_fn+=1
else:
count_tp+=1
print ('Total:', len(label_tst))
print 'FP被分为好人的坏人:', count_fp, 'TN正确分类的坏人:', count_tn, '坏人正确率:',round(float(count_tn)/float((count_fp+count_tn)),3)
print 'FN被分为坏人的好人:', count_fn, 'TP正确分类的好人:', count_tp, '好人正确率:',round(float(count_tp)/float((count_fn+count_tp)),3)
adress1='D:/data/bigtable_2B.csv'
df_0 = pd.read_csv(adress1,sep=',',dtype={'uid_membertype':str,'uid_source':str})
df_1 = df_0.dropna(how='any')
drop = ['uid_membertype','uid_source']
df_1 = df_1.drop(drop,axis=1)
data = df_1.ix[:,1:-1]
label = df_1['uid_flag']
print ('Samples shape:',data.shape)
print (data.head())
# sns.set(style='darkgrid',color_codes=True)
# sns.distplot(label,axlabel=False)
# plt.show()
count_1 = float(label.sum())
count_0 = float(label.count() - float(label.sum()))
print ('Good Samples:',count_1,'Bad Samples:',count_0)
relation=['com_passenger_count','com_idno_count','com_mobile_count',
'ord_success_order_cmobile_count']
interaction=['voi_complaint_count','voi_complrefund_count','voi_comment_count','acc_loginday_count',
'pro_validpoints','pro_base_active','pro_ctrip_profits','pro_customervalue']
fanacial=['voi_complrefund_count','fai_lackbalance','bil_payord_count',
'bil_refundord_count','bil_payord_credit_count','bil_payord_debit_count','bil_ordertype_count','bil_platform_count',
'pro_htl_star_prefer','pro_htl_consuming_capacity','pro_phone_type','ord_success_max_order_amount',
'ord_total_order_amount','ord_success_first_class_order_count','ord_success_flt_first_class_order_count',
'ord_success_trn_max_order_amount','ord_success_pkg_order_count'
,'ord_success_htl_first_class_order_count','ord_success_htl_max_order_amount','ord_success_htl_aboard_order_amount',
'ord_success_aboard_order_count']
cosuming=['pro_generous_stingy_tag','pro_base_active','pro_customervalue','pro_phone_type','pro_advanced_date','pro_generous_stingy_tag','pro_htl_star_prefer','pro_htl_consuming_capacity',
'pro_phone_type','pro_validpoints','pro_ctrip_profits','pro_customervalue','pro_ismarketing',
'ord_success_max_order_amount','ord_success_order_count','ord_success_avg_leadtime',
'ord_total_order_amount','ord_cancel_order_count','ord_success_first_class_order_count',
'ord_success_first_class_order_amount','ord_success_order_type_count','ord_success_aboard_order_count',
'ord_success_aboard_order_amount','ord_success_order_acity_count','ord_success_flt_last_order_days','ord_success_flt_first_class_order_amount',
'ord_success_flt_max_order_amount','ord_success_flt_avg_order_pricerate','ord_success_flt_aboard_order_count'
,'ord_success_flt_order_count','ord_success_flt_order_acity_count',
'ord_cancel_flt_order_count','ord_success_htl_last_order_days',
'ord_success_htl_first_class_order_amount','ord_success_htl_max_order_amount','ord_success_htl_order_refund_ratio',
'ord_success_htl_aboard_order_count','ord_success_htl_guarantee_order_count',
'ord_success_htl_noshow_order_count','ord_success_htl_order_count','ord_cancel_htl_order_count'
,'ord_success_pkg_last_order_days','ord_success_pkg_max_order_amount',
'ord_success_trn_last_order_days','ord_success_trn_max_order_amount','ord_success_trn_order_count',
'ord_success_trn_order_amount']
people=['uid_grade','uid_dealorders','uid_emailvalid','uid_age','uid_mobilevalid',
'uid_addressvalid','uid_isindentify','uid_authenticated_days','uid_signupdays',
'uid_signmonths','uid_lastlogindays','uid_samemobile','ord_success_order_cmobile_count',
'com_mobile_count','com_has_child','pro_generous_stingy_tag','pro_base_active',
'pro_customervalue','pro_phone_type']
data_new=Desc_Scaler(data,[0.75,0.96])
label_xc=np.array(label).ravel()
data_trn,data_tst,label_trn,label_tst=train_test_split(data_new,label_xc,test_size=0.2)
# #Using random forest regression to classify
# rfr_xc=RandomForestRegressor(random_state=500)
# rfr_xc.fit(data_trn,label_trn)
# rfr_pre_xc=rfr_xc.predict(data_tst)
# print ('Using random forest regression')
# print ('AUC-ROC:',roc_auc_score(label_tst,rfr_pre_xc))
# answer=rfr_pre_xc>0.5
# print (classification_report(label_tst,answer,target_names=['neg','pos']))
# Report(label_tst,rfr_pre_xc)
# joblib.dump(rfr_xc, "D:/project_csm/model/rfr_xc_train_model.m")
# #Using GBDT to regression
# gbtr_all=GradientBoostingRegressor(n_estimators=250,random_state=50)
# gbtr_all.fit(data_trn,label_trn)
# gbtr_pre_all=gbtr_all.predict(data_tst)
# print ('Using GBT regression')
# print ('AUC-ROC:',roc_auc_score(label_tst,gbtr_pre_all))
# answer=gbtr_pre_all>0.5
# print (classification_report(label_tst,answer,target_names=['neg','pos']))
# Report(label_tst,gbtr_pre_all)
# joblib.dump(gbtr_all, "D:/project_csm/model/gbtr_xc_train_model.m")
#
# tst_pre=rfr_pre_xc*0.2+gbtr_pre_all*0.8
# print ('AUC-ROC:',roc_auc_score(label_tst,tst_pre))
# answer=tst_pre>0.5
# print (classification_report(label_tst,answer,target_names=['neg','pos']))
# Report(label_tst,tst_pre)
#
# Importance_Plot(data_new,label)
def Predict_test_11(data_tst):
rfr = joblib.load("D:/project_csm/model/rfr_xc_train_model.m")
rfr_pre_xc = rfr.predict(data_tst)
gbtr = joblib.load("D:/project_csm/model/gbtr_xc_train_model.m")
gbtr_pre_all = gbtr.predict(data_tst)
tst_pre = rfr_pre_xc * 0.2 + gbtr_pre_all * 0.8
print tst_pre
return tst_pre
Predict_test_11(data_tst)
# rfr_5_xc=RandomForestRegressor(random_state=500)
# rfr_5_xc.fit(data_trn[relation],label_trn)
# rfr_5_pre_xc=rfr_5_xc.predict(data_tst[relation])
# joblib.dump(rfr_5_xc, "D:/project_csm/model/rfr_5_xc_train_model.m")
# rfr_4_xc=RandomForestRegressor(random_state=500)
# rfr_4_xc.fit(data_trn[cosuming],label_trn)
# rfr_4_pre_xc=rfr_4_xc.predict(data_tst[cosuming])
# joblib.dump(rfr_4_xc, "D:/project_csm/model/rfr_4_xc_train_model.m")
# rfr_3_xc=RandomForestRegressor(random_state=500)
# rfr_3_xc.fit(data_trn[people],label_trn)
# rfr_3_pre_xc=rfr_3_xc.predict(data_tst[people])
# joblib.dump(rfr_3_xc, "D:/project_csm/model/rfr_3_xc_train_model.m")
# rfr_2_xc=RandomForestRegressor(random_state=500)
# rfr_2_xc.fit(data_trn[fanacial],label_trn)
# rfr_2_pre_xc=rfr_2_xc.predict(data_tst[fanacial])
# joblib.dump(rfr_2_xc, "D:/project_csm/model/rfr_2_xc_train_model.m")
# rfr_1_xc=RandomForestRegressor(random_state=500)
# rfr_1_xc.fit(data_trn[interaction],label_trn)
# rfr_1_pre_xc=rfr_1_xc.predict(data_tst[interaction])
# joblib.dump(rfr_1_xc, "D:/project_csm/model/rfr_1_xc_train_model.m")
def Predict_test_51(data_tst):
rfr_5_xc = joblib.load("D:/project_csm/model/rfr_5_xc_train_model.m")
rfr_5_pre_xc = rfr_5_xc.predict(data_tst[relation])
rfr_4_xc = joblib.load("D:/project_csm/model/rfr_4_xc_train_model.m")
rfr_4_pre_xc = rfr_4_xc.predict(data_tst[cosuming])
rfr_3_xc = joblib.load("D:/project_csm/model/rfr_3_xc_train_model.m")
rfr_3_pre_xc = rfr_3_xc.predict(data_tst[people])
rfr_2_xc = joblib.load("D:/project_csm/model/rfr_2_xc_train_model.m")
rfr_2_pre_xc = rfr_2_xc.predict(data_tst[fanacial])
rfr_1_xc = joblib.load("D:/project_csm/model/rfr_1_xc_train_model.m")
rfr_1_pre_xc = rfr_1_xc.predict(data_tst[interaction])
gbtr = joblib.load("D:/project_csm/model/gbtr_xc_train_model.m")
gbtr_pre_all = gbtr.predict(data_tst)
rfr_xc = rfr_5_pre_xc * 0.1 + rfr_4_pre_xc * 0.1 + rfr_3_pre_xc * 0.25 + rfr_2_pre_xc * 0.3 + rfr_1_pre_xc * 0.25
tst_pre = rfr_xc * 0.2 + gbtr_pre_all * 0.8
print tst_pre
return tst_pre
Predict_test_51(data_tst)