diff --git a/src/brevitas_examples/common/learned_round/learned_round_optimizer.py b/src/brevitas_examples/common/learned_round/learned_round_optimizer.py index 662f9142a..c9927d23b 100644 --- a/src/brevitas_examples/common/learned_round/learned_round_optimizer.py +++ b/src/brevitas_examples/common/learned_round/learned_round_optimizer.py @@ -723,7 +723,7 @@ def skip_full_execution(self, block, next_block, block_forward, cache): # Finally (!), we compute the quantized input of the next block block.eval() if torch.cuda.is_available(): - block.cuda() + block.cuda() next_quant_input = [] pbar = tqdm(range(len(cache)), desc='', leave=False) with torch.no_grad():