Skip to content

Latest commit

 

History

History
878 lines (825 loc) · 21.4 KB

手写代码.md

File metadata and controls

878 lines (825 loc) · 21.4 KB
class Solution
{
public:
	bool hasCycle(ListNode *head)
	{
		unordered_set<ListNode *> hash;
		while (head != nullptr)
		{
			if (hash.find(head) != hash.end())
				return true;
			hash.insert(head);
			head = head->next;
		}
		return false;
	}
};
class Solution
{
public:
	bool hasCycle(ListNode *head)
	{
		if (head == nullptr)
			return false;
		ListNode *slow = head;
		ListNode *fast = head->next;
		while (fast && fast->next)
		{
			if (slow == fast)
				return true;
			slow = slow->next;
			fast = fast->next->next;
		}
		return false;
	}
};
class Solution
{
public:
	ListNode *removeNthFromEnd(ListNode *head, int n)
	{
		ListNode *next = head;
		ListNode *nth_pre = head;
		int i = 0;
		while (next)
		{
			i++;
			if (i > n + 1)
				nth_pre = nth_pre->next;
			next = next->next;
		}
		if (n == i)
			return head->next;
		ListNode *tmp = nth_pre->next;
		nth_pre->next = nth_pre->next->next;
		delete tmp;
		return head;
	}
};
class Solution
{
public:
	ListNode *addTwoNumbers(ListNode *l1, ListNode *l2)
	{
		ListNode res(0);
		ListNode *l3 = &res;
		int digit, rest = 0;
		while (l1 || l2 || rest)
		{
			digit = (l1 ? l1->val : 0) + (l2 ? l2->val : 0) + rest;
			rest = digit / 10;
			l3->next = new ListNode(digit % 10);
			l3 = l3->next;
			l1 = l1 ? l1->next : l1;
			l2 = l2 ? l2->next : l2;
		}
		return res.next;
	}
};
class Solution
{
public:
	ListNode *reverseList(ListNode *head)
	{
		ListNode *pre = nullptr;
		ListNode *cur = head;
		while (cur)
		{
			ListNode *tmp = cur->next;
			cur->next = pre;
			pre = cur;
			cur = tmp;
		}
		return pre;
	}
};
class Solution
{
public:
	ListNode *reverseList(ListNode *head)
	{
		if (!head || !head->next)
			return head;
		ListNode *tmp = reverseList(head->next);
		head->next->next = head;
		head->next = nullptr;
		return tmp;
	}
};
class Solution
{
public:
	ListNode *mergeTwoLists(ListNode *l1, ListNode *l2)
	{
		ListNode tmp(0);
		ListNode *cur = &tmp;
		while (l1 != nullptr && l2 != nullptr)
		{
			if (l1->val < l2->val)
			{
				cur->next = l1;
				cur = l1;
				l1 = l1->next;
			} else
			{
				cur->next = l2;
				cur = l2;
				l2 = l2->next;
			}
		}
		if (l1 == nullptr)
			cur->next = l2;
		else
			cur->next = l1;
		return tmp.next;
	}
};
class Solution
{
public:
	vector<int> twoSum(vector<int>& nums, int target) 
	{
	    unordered_map<int,int> index;
	    for(int i = 0; i<nums.size(); i++)
	    {
        	int element = target - nums[i];
        	if(index.find(element)!=index.end())
        	{
	            return vector<int>{i,index[element]};
    	    }
        	index[nums[i]] = i;
    	}
	}
};
class Solution
{
public:
	int myAtoi(string str)
	{
		int sign = 1, base = 0, i = 0;
		while (str[i] == ' ')
			i++;
		if (str[i] == '-' || str[i] == '+')
			sign = 1 - 2 * (str[i++] == '-');
		while (str[i] >= '0' && str[i] <= '9')
		{
			if (base > INT_MAX / 10 || (base == INT_MAX / 10 && str[i] - '0' > 7))
			{
				if (sign == 1)
					return INT_MAX;
				else
					return INT_MIN;
			}
			base = 10 * base + (str[i++] - '0');
		}
		return base * sign;
	}
};
class Solution 
{
public:
    int findKthLargest(vector<int>& nums, int k) 
    {
        int left = 0, right = nums.size() - 1;
        while (true) 
        {
            int pos = partition(nums, left, right);
            if (pos == k - 1) return nums[pos];
            else if (pos > k - 1) right = pos - 1;
            else left = pos + 1;
        }
    }
    int partition(vector<int>& nums, int left, int right) 
    {
        int pivot = nums[left], l = left + 1, r = right;
        while (l <= r) 
        {
            if (nums[l] < pivot && nums[r] > pivot) 
            {
                swap(nums[l++], nums[r--]);
            }
            if (nums[l] >= pivot) ++l;
            if (nums[r] <= pivot) --r;
        }
        swap(nums[left], nums[r]);
        return r;
    }
};
class Solution
{
public:
	int findKthLargest(vector<int> &nums, int k)
	{
		priority_queue<int, vector<int>, greater<int>> pq;
		for (int i = 0; i < k; i++)
			pq.push(nums[i]);
		for (int i = k; i < nums.size(); i++)
		{
			if (nums[i] > pq.top())
			{
				pq.pop();
				pq.push(nums[i]);
			}
		}
		return pq.top();
	}
};
class Solution
{
public:
	int search(vector<int> &nums, int target)
	{
		int start = 0, end = nums.size() - 1;
		while (start <= end)
		{
			int mid = (end + start) / 2;
			if (nums[mid] == target)
				return mid;
			if (nums[start] <= nums[mid])
			{
				int res = binary_search(nums, start, mid, target);
				if (res == -1)
					start = mid + 1;
				else
					return res;
			} else
			{
				int res = binary_search(nums, mid + 1, end, target);
				if (res == -1)
					end = mid - 1;
				else
					return res;
			}
		}
		return -1;
	}

	int binary_search(vector<int> &nums, int start, int end, int target)
	{
		while (start <= end)
		{
			int mid = (start + end) / 2;
			if (nums[mid] == target)
				return mid;
			if (nums[mid] < target)
				start = mid + 1;
			if (nums[mid] > target)
				end = mid - 1;
		}
		return -1;
	}
};
class Solution
{
public:
	long long reversePairs(vector<int> &A)
	{
		if (!A.size())
			return 0;
		long long counter = 0;
		vector<int> tmp(A);
		merge(A, tmp, 0, A.size() - 1, counter);
		return counter;
	}

	void merge(vector<int> &A, vector<int> &tmp, size_t l, size_t r, long long &counter)
	{
		if (l >= r) return;
		size_t mid = (r - l + 1) / 2 + l;
		merge(A, tmp, l, mid - 1, counter);
		merge(A, tmp, mid, r, counter);
		size_t i = l, l1 = l, l2 = mid;
		while (l1 <= mid - 1 && l2 <= r)
		{
			if (tmp[l1] <= tmp[l2])
			{
				A[i++] = tmp[l1++];
			} else
			{
				A[i++] = tmp[l2++];
				counter += mid - l1;
			}
		}
		while (l1 <= mid - 1)
			A[i++] = tmp[l1++];
		while (l2 <= r)
			A[i++] = tmp[l2++];
		tmp = A;
	}
};
class Solution 
{
public:
    int counter = 0;
    int res = 0;
    int kthSmallest(TreeNode* root, int k) 
    {
        if(root == nullptr)
            return 0;
        kthSmallest(root->left,k);
        counter++;
        if(counter==k)
            res = root->val;
        kthSmallest(root->right,k);
        return res;
    }
};
class Solution 
{
public:
    int res = INT_MIN;
    int maxPathSum(TreeNode* root) 
    {
        fun(root);
        return res;
    }
    int fun(TreeNode* root)
    {
        if(!root)
            return 0;
        int left = max(0,fun(root->left));
        int right = max(0,fun(root->right));
        res = max(res, root->val + left + right); 
        return max(left,right)+root->val;
    }
};
class Solution 
{
public:
    vector<vector<int>> levelOrder(TreeNode* root) 
    {
        vector<vector<int>> res;
        if(root==0) return res;
        queue<TreeNode*> que;
        que.push(root);
        int size = 1, level = 0;
        while(!que.empty())
        {
            int nextSize = 0;
            vector<int> currLevelNodes;
            for(int i=0; i<size; ++i) 
            {
                TreeNode* curr = que.front();
                currLevelNodes.push_back(curr->val);
                if(curr->left!=0) 
                {
                    que.push(curr->left); nextSize++;
                }
                if(curr->right!=0) 
                {
                    que.push(curr->right); nextSize++;
                }
                que.pop();
            }
            res.push_back(currLevelNodes);
            level++; size = nextSize;
        }
        return res;
    }
};
class Solution 
{
public:
    bool isBalanced(TreeNode* root) 
    {
        if (!root)
            return true;
        if (abs(getDepth(root->left) - getDepth(root->right)) > 1) 
            return false;
        return isBalanced(root->left) && isBalanced(root->right);   
    }
    
    int getDepth(TreeNode* root) 
    {
        if (!root)
            return 0;
        return 1 + max(getDepth(root->left), getDepth(root->right));
    }
};
class MinStack 
{
public:
    MinStack() 
    {
        Min = INT_MAX;
    }
    
    void push(int x) 
    {
        Min = Min < x ? Min : x;
        s1.push(x);
        s2.push(Min);
    }
    
    void pop() 
    {
        s1.pop();
        s2.pop();
        if(!s2.empty())
            Min = s2.top();
        else
            Min = INT_MAX;
    }
    
    int top() 
    {
        return s1.top();
    }
    
    int getMin() 
    {
        return s2.top();
    }
    stack<int> s1;
    stack<int> s2;
    int Min;
};

二叉树最远两节点

K路归并

问题:请给出一个时间为O(nlgk),用来将k个已排序数组合并为一个排序数组的算法。此处的n为所有输入数组中元素的总数。(提示:用一个最小堆来做k路合并)

编程思路:

(1)取k个元素建立最小堆,这k个元素分别是k个数组的第一个元素。建堆的时间复杂度O(k)。

(2)堆顶元素就是k个数组中最小的那个元素,取出它。时间复杂度O(1)。

(3)若堆顶元素所在数组不为空,则取下一个元素放到堆顶位置,这可能破坏了最小堆性质,所以进行堆调整。堆调整时间复杂度O(lgk)。若为空,则此子数组已经被合并完毕,则删除最小堆的堆顶元素,此时最小堆的heapSize减小了1 。删除指定元素时间复杂度O(lgk)。  

智力题:赛马

有 25 匹马和 5 条赛道,赛马过程无法进行计时,只能知道相对快慢。问最少需要几场赛马可以知道前 3 名。

先把 25 匹马分成 5 组,进行 5 场赛马,得到每组的排名。再将每组的第 1 名选出,进行 1 场赛马,按照这场的排名将 5 组先后标为 A、B、C、D、E。可以知道,A 组的第 1 名就是所有 25 匹马的第 1 名。而第 2、3 名只可能在 A 组的 2、3 名,B 组的第 1、2 名,和 C 组的第 1 名,总共 5 匹马,让这 5 匹马再进行 1 场赛马,前两名就是第 2、3 名。所以总共是 5+1+1=7 场赛马。
A 组:1,2,3,4,5
B 组:1,2,3,4,5
C 组:1,2,3,4,5
D 组:1,2,3,4,5
E 组:1,2,3,4,5

智力题:扔鸡蛋

一栋楼有 100 层,在第 N 层或者更高扔鸡蛋会破,而第 N 层往下则不会。给 2 个鸡蛋,求 N,要求最差的情况下扔鸡蛋的次数最少。

 分析:试着从10楼开始扔鸡蛋,然后是20层,30层。。。。。100层

如果鸡蛋1在第十层(随便举例子的一个数值也可以是别的数,看到后面就会知道这个值应该取14,但是刚开始分析谁也不知道该取14不是么)扔下,鸡蛋摔碎。那么第二个鸡蛋只需要从1-9层依次扔下去试就能试出来是1-10中的第几层,所以最差在恰好在第十层才能摔碎,结果是1+9=10次

如果鸡蛋1在第100层是才摔碎,实验楼层依次是:10层、20层、30层、、、100层,试验了10次。在第90层时鸡蛋没有摔碎,但是在100层摔碎了。这说明N在[90,100]区间内,所以鸡蛋2只需要从91层楼开始试验,最差一直试验到99层必然会测试出N的值。最差次数:鸡蛋1的次数10次 + 鸡蛋2的次数9次 = 19次。

设计一种扔鸡蛋的方法,使得扔鸡蛋1的次数无论是第一次还是最后一次扔下的次数越稳定越好。

负载均衡方法:扔鸡蛋 1的次数 和扔鸡蛋2的次数的和 不论什么时候都是一样的,鸡蛋1多扔一次鸡蛋2 就少扔一次,假如开始扔鸡蛋1的初始楼层是x层,那么扔鸡蛋2初始楼层是由扔鸡蛋1是否摔碎决定的。即,鸡蛋1摔碎的那一楼层 和 扔鸡蛋1的摔碎之前扔的那一次楼层数之间的差值减1(假设鸡蛋1从20层开始扔下,没碎;从30层扔下,碎了,那么鸡蛋2 就得从21层开始扔,最差一直扔到29层就能判断出N的值了),如果在x层扔下没碎,那么下一次扔的楼层就是x+x-1层(第一次是20层,下一次就是20+20-1=39层)鸡蛋2的次数相应的就减去1次;第二次没碎,下次从x+ x-1 + x-2层扔下(承接上面括号的例子:20+19+18 = 57层),依次类推.....

也就是 : x +  (x-1)+ (x-2)+。。。+1=100求一下x值   x =  14.先从14层往下扔,没碎的前提下再从14+13=27层往下扔。最差的情况下就是第一次在14层恰好摔碎了,鸡蛋2只需要从1-13层个扔一次就能判断出N的值了

智力题:开关灯

对一批编号为1-100,全部开关朝上(开)的灯进行以下操作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号是哪些?

熄灭的灯需要开关奇数次,对于任意只一个整数c,如果c能被a整除,那么必然也能被c/a整除,但是对于平方数而言c/a == a所以它们总共有奇数个约数而其他的数的约数个数都为偶数。所以关熄的灯的编号为1、4、9、16、25、36、49、64、81、100。

strcpy

char * strcpy(char *dst, const char *src)
{
    assert(dst && src);
    char *ret = dst;
    while ((*dst++=*src++)!='\0');
    return ret;
}

strcmp

int strcmp(const char *str1, const char *str2)
{
	assert(str1 && str2);
    int ret=0;
    while( !(ret = *(unsigned char*)str1 - *(unsigned char*)str2 ) && *str1 )
    {
        str1++;
        str2++;
    }
    if(ret < 0)
        return -1;
    else if(ret > 0) 
        return 1;
    return 0;    
}

strcat

char *strcat(char *str1, char *str2)
{
	assert(str1 && str2);
	char *res = str1;
	while(*str1!='\0') str1++;
	while(*str2!='\0') *str1++ = *str2++;
	*str1 = '\0';
	return res;
}

memcpy

void* memcpy(void* dst, const void* src, size_t n)
{
	assert(dst && src);
    char *p1 = (char*)dst;
    char *p2 = (char*)src;
    while(n--) 
        *p1++ = *p2++;
    return dst;
}

memmove

void* memmove(void* dst, const void* src, size_t n)
{
	assert(dst && src);
    char* p1 = (char*)dst;
    char* p2 = (char*)src;
    if(p1>p2 && (p2+n>p1))
	{
        p1 += n-1;
        p2 += n-1;
        while(n--)
            *p1-- = *p2--;
    }else
	{
        while(n--)
            *p1++ = *p2++;
    }
    return dst;
}

判断一个数是不是2的n次方--不使用循环

if ( (a>0) && (a & (a-1)==0 )

智能指针

#include <iostream>
#include <memory>

template<typename T>
class SmartPointer {
private:
    T* _ptr;
    size_t* _count;
public:
    SmartPointer(T* ptr = nullptr) :
            _ptr(ptr) {
        if (_ptr != nullptr) {
            _count = new size_t(1);
        } else {
            _count = new size_t(0);
        }
    }

    SmartPointer(const SmartPointer& ptr) {
        if (this != &ptr) {
            this->_ptr = ptr._ptr;
            this->_count = ptr._count;
            (*this->_count)++;
        }
    }

    SmartPointer& operator=(const SmartPointer& ptr) {
        if (this->_ptr == ptr._ptr) {
            return *this;
        }

        if (this->_ptr != nullptr) {
            (*this->_count)--;
            if (*this->_count == 0) {
                delete this->_ptr;
                delete this->_count;
            }
        }

        this->_ptr = ptr._ptr;
        this->_count = ptr._count;
        (*this->_count)++;
        return *this;
    }

    T& operator*() {
        assert(this->_ptr == nullptr);
        return *(this->_ptr);

    }

    T* operator->() {
        assert(this->_ptr == nullptr);
        return this->_ptr;
    }

    ~SmartPointer() {
        (*this->_count)--;
        if (*this->_count == 0) {
            delete this->_ptr;
            delete this->_count;
        }
    }

    size_t use_count(){
        return *this->_count;
    }
};

内存池

#include <iostream>
#include <list>

class MemoryPool {
public:
    MemoryPool(size_t size, int blockCount = 50) {
        chunkSize_ = size;
        
        if(chunkSize_ < sizeof(Node))
            chunkSize_ = sizeof(Node);
        size *= blockCount;

        allocMemorySize_ = size;

        // 预分配内存
        pool_ = operator new(size);
        
        // 初始化空闲链表
        freeList_ = nullptr;
        char* p = static_cast<char*>(pool_);
        for(int i = 0; i < blockCount; ++i) {
            Node* node = reinterpret_cast<Node*>(p);
            node->next = freeList_;
            freeList_ = node;
            p += chunkSize_;
        }
    }

    ~MemoryPool() {
        operator delete(pool_);
    }

    // 分配内存
    void* alloc(size_t size) {
        if(size > chunkSize_ || freeList_ == nullptr)
            return nullptr;

        Node* node = freeList_;
        freeList_ = node->next;
        return node;
    }

    // 释放内存
    void dealloc(void* p) {
        Node* node = static_cast<Node*>(p);
        node->next = freeList_;
        freeList_ = node;
    }

private:
    // 定义链表节点
    struct Node {
        Node* next;
    };

    void* pool_; // 预分配的内存
    Node* freeList_; // 空闲链表
    size_t chunkSize_; // 预分配内存的块大小
    size_t allocMemorySize_; // 预分配的内存大小
};

int main() {
    // 创建一个容纳50个int的内存池
    MemoryPool intPool(sizeof(int), 50);

    // 分配一个int
    int* p1 = static_cast<int*>(intPool.alloc(sizeof(int)));
    *p1 = 20;
    std::cout << "*p1: " << *p1 << std::endl;

    // 释放一个int
    intPool.dealloc(p1);

    return 0;
}

生产者消费者队列

template<typename T>
class Queue {
public:
    T pop() {
        std::unique_lock<std::mutex> mlock(mutex_);
        while (queue_.empty()) {
            cond_.wait(mlock);
        }
        auto item = queue_.front();
        queue_.pop();
        return item;
    }

    void push(const T& item) {
        std::unique_lock<std::mutex> mlock(mutex_);
        queue_.push(item);
        mlock.unlock();
        cond_.notify_one();
    }

    Queue()=default;
    Queue(const Queue&) = delete;            // disable copying
    Queue& operator=(const Queue&) = delete; // disable assignment

private:
    std::queue<T> queue_;
    std::mutex mutex_;
    std::condition_variable cond_;
};

线程池

#include <vector>
#include <queue>
#include <atomic>
#include <future>
#include <thread>
#include <functional>
#include <stdexcept>

class ThreadPool {
public:
    ThreadPool(size_t);
    template<class F, class... Args>
    auto enqueue(F&& f, Args&&... args) 
        -> std::future<typename std::result_of<F(Args...)>::type>;
    ~ThreadPool();
    
private:
    // 线程池
    std::vector< std::thread > workers;
    // 任务队列
    std::queue< std::function<void()> > tasks;
    
    // 同步
    std::mutex queue_mutex;
    std::condition_variable condition;
    bool stop;
};

inline ThreadPool::ThreadPool(size_t threads)
    :   stop(false)
{
    for(size_t i = 0;i<threads;++i)
        workers.emplace_back(
            [this]
            {
                for(;;)
                {
                    std::function<void()> task;

                    {
                        std::unique_lock<std::mutex> lock(this->queue_mutex);
                        this->condition.wait(lock,
                            [this]{ return this->stop || !this->tasks.empty(); });
                        if(this->stop && this->tasks.empty())
                            return;
                        task = std::move(this->tasks.front());
                        this->tasks.pop();
                    }

                    task();
                }
            }
        );
}

// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args) 
    -> std::future<typename std::result_of<F(Args...)>::type>
{
    using return_type = typename std::result_of<F(Args...)>::type;

    auto task = std::make_shared< std::packaged_task<return_type()> >(
            std::bind(std::forward<F>(f), std::forward<Args>(args)...)
        );
        
    std::future<return_type> res = task->get_future();
    {
        std::unique_lock<std::mutex> lock(queue_mutex);

        // don't allow enqueueing after stopping the pool
        if(stop)
            throw std::runtime_error("enqueue on stopped ThreadPool");

        tasks.emplace([task](){ (*task)(); });
    }
    condition.notify_one();
    return res;
}

// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
    {
        std::unique_lock<std::mutex> lock(queue_mutex);
        stop = true;
    }
    condition.notify_all();
    for(std::thread &worker: workers)
        worker.join();
}