Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

hyp values for custom dataset #23

Open
mhyeonsoo opened this issue May 10, 2022 · 0 comments
Open

hyp values for custom dataset #23

mhyeonsoo opened this issue May 10, 2022 · 0 comments

Comments

@mhyeonsoo
Copy link

mhyeonsoo commented May 10, 2022

Hi, thanks for the great soucres.

I am trying to train the model with the custom dataset, and found that data config for model hyperparameter needs to be set for each dataset properly.

I assumed that you've found the best combinations with the experiments, but just curious about the way to do.
If there is any condition or specific way to setup hyperparameter, could you briefly tell me how to do that?

For now, I tried evolve argument from yolov repository, which is finding appropriate hyperparameter settings, but I could see the result like below, which does not look like being trained well.

image

The anchor values that I used is,

  - [115,  85, 123,  98, 136, 112]
  - [149, 124, 141, 149, 157, 155]
  - [194, 248, 298, 194, 544, 178]

apparently, in debugging process, my 'out' parameter in polygon_test.py has weird values.

out = polygon_non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=False)    
t2 += time_synchronized() - t

which is,

[tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10)), tensor([], device='cuda:0', size=(0, 10))]

And I found one more thing,
When I saw the UCAS dataset's label text file, the order of the coordinates was

(bottom left, top left, top right, bottom right).

However, the order of custom dataset's coordinates label that was generated by Tutorial2 (https://github.com/XinzeLee/PolygonObjectDetection/blob/main/polygon-yolov5/Polygon-Tutorial2.ipynb),
was

(bottom right, bottom left, top left, top right).

can this matter for the model training performance? Just quick curiosity..!

Thanks!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant