forked from etched-ai/open-oasis
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgame.py
459 lines (385 loc) · 16.2 KB
/
game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import time
from typing import Tuple
import torch
import torch._dynamo
torch._dynamo.config.suppress_errors = True
from dit import DiT_models
from vae import VAE_models
from torchvision.io import read_video
from utils import sigmoid_beta_schedule
from einops import rearrange
from torch import autocast
import pygame
import numpy as np
assert torch.cuda.is_available()
device = "cuda:0"
# Sampling params
model_path = "oasis500m.pt"
vae_path = "vit-l-20.pt"
B = 1
max_noise_level = 1000
ddim_noise_steps = 16
noise_abs_max = 20
enable_torch_compile_model = True
enable_torch_compile_vae = True
# Adjustable context window size
context_window_size = 4 # Adjust this value as needed
n_prompt_frames = 4
offset = 0
scaling_factor = 0.07843137255
# Get input video (first frame as prompt)
video_id = "snippy-chartreuse-mastiff-f79998db196d-20220401-224517.chunk_001"
stabilization_level = 15
screen_width = 1024 # Adjust as needed
screen_height = 1024 # Adjust as needed
# Define ACTION_KEYS
ACTION_KEYS = [
"inventory",
"ESC",
"hotbar.1",
"hotbar.2",
"hotbar.3",
"hotbar.4",
"hotbar.5",
"hotbar.6",
"hotbar.7",
"hotbar.8",
"hotbar.9",
"forward",
"back",
"left",
"right",
"cameraX",
"cameraY",
"jump",
"sneak",
"sprint",
"swapHands",
"attack",
"use",
"pickItem",
"drop",
]
def clamp_mouse_input(mouse_input: Tuple[int, int]) -> Tuple[float, float]:
"""
Clamps and normalizes mouse input coordinates.
Args:
mouse_input (Tuple[int, int]): A tuple containing mouse x and y coordinates.
Returns:
Tuple[float, float]: A tuple containing the clamped and normalized x and y values.
Raises:
AssertionError: If the normalized values are out of the expected range.
"""
max_val = 20
bin_size = 0.5
num_buckets = int(max_val / bin_size) # 40
x, y = mouse_input
# Normalize the inputs
normalized_x = (x - num_buckets) / num_buckets
normalized_y = (y - num_buckets) / num_buckets
# Clamp the values to be within [-1, 1]
clamped_x = max(-1.0, min(1.0, normalized_x))
clamped_y = max(-1.0, min(1.0, normalized_y))
# Optional: Assert to ensure values are within the expected range
assert -1.0 - 1e-3 <= clamped_x <= 1.0 + 1e-3, f"Normalized x must be in [-1, 1], got {clamped_x}"
assert -1.0 - 1e-3 <= clamped_y <= 1.0 + 1e-3, f"Normalized y must be in [-1, 1], got {clamped_y}"
return (clamped_x, clamped_y)
# Helper functions to capture live actions
def get_current_action(mouse_rel):
action = {}
keys = pygame.key.get_pressed()
mouse_buttons = pygame.mouse.get_pressed()
clamped_input = clamp_mouse_input(mouse_rel)
# Map keys to actions
action["inventory"] = 1 if keys[pygame.K_e] else 0
action["ESC"] = 1 if keys[pygame.K_ESCAPE] else 0
action["hotbar.1"] = 1 if keys[pygame.K_1] else 0
action["hotbar.2"] = 1 if keys[pygame.K_2] else 0
action["hotbar.3"] = 1 if keys[pygame.K_3] else 0
action["hotbar.4"] = 1 if keys[pygame.K_4] else 0
action["hotbar.5"] = 1 if keys[pygame.K_5] else 0
action["hotbar.6"] = 1 if keys[pygame.K_6] else 0
action["hotbar.7"] = 1 if keys[pygame.K_7] else 0
action["hotbar.8"] = 1 if keys[pygame.K_8] else 0
action["hotbar.9"] = 1 if keys[pygame.K_9] else 0
action["forward"] = 2 if keys[pygame.K_w] else 0
action["back"] = 2 if keys[pygame.K_s] else 0
action["left"] = 2 if keys[pygame.K_a] else 0
action["right"] = 2 if keys[pygame.K_d] else 0
action["camera"] = (mouse_rel[1] / 4, mouse_rel[0] / 4) # tuple (x, y)
action["jump"] = 1 if keys[pygame.K_SPACE] else 0
action["sneak"] = 1 if keys[pygame.K_LSHIFT] or keys[pygame.K_RSHIFT] else 0
action["sprint"] = 1 if keys[pygame.K_LCTRL] or keys[pygame.K_RCTRL] else 0
action["swapHands"] = 0 # Map to a key if needed
action["attack"] = 1 if mouse_buttons[0] else 0 # Left mouse button
action["use"] = 1 if mouse_buttons[2] else 0 # Right mouse button
action["pickItem"] = 0 # Map to a key if needed
action["drop"] = 1 if keys[pygame.K_q] else 0
return action
def action_to_tensor(action):
actions_one_hot = torch.zeros(len(ACTION_KEYS), device=device)
for j, action_key in enumerate(ACTION_KEYS):
if action_key.startswith("camera"):
if action_key == "cameraX":
value = action["camera"][0]
elif action_key == "cameraY":
value = action["camera"][1]
else:
raise ValueError(f"Unknown camera action key: {action_key}")
# Normalize value to be in [-1, 1]
max_val = 20
bin_size = 0.5
num_buckets = int(max_val / bin_size)
value = (value) / num_buckets
value = max(min(value, 1.0), -1.0)
else:
value = action.get(action_key, 0)
value = float(value)
actions_one_hot[j] = value
return actions_one_hot
# Initialize pygame
pygame.init()
pygame.mouse.set_visible(True)
pygame.event.set_grab(False)
# Set up display
screen = pygame.display.set_mode((screen_width, screen_height))
pygame.display.set_caption("Generated Video")
# Load DiT checkpoint
ckpt = torch.load(model_path)
model = DiT_models["DiT-S/2"]()
model.load_state_dict(ckpt, strict=False)
model = model.to(device).half().eval()
# Load VAE checkpoint
vae_ckpt = torch.load(vae_path)
vae = VAE_models["vit-l-20-shallow-encoder"]()
vae.load_state_dict(vae_ckpt)
vae = vae.to(device).half().eval()
noise_range = torch.linspace(-1, max_noise_level - 1, ddim_noise_steps + 1).to(device)
ctx_max_noise_idx = ddim_noise_steps // 10 * 3
if enable_torch_compile_model:
# Optional compilation for performance
model = torch.compile(model, mode='reduce-overhead')
if enable_torch_compile_vae:
vae = torch.compile(vae, mode='reduce-overhead')
# mp4_path = '/home/mix/Playground/ComfyUI/output/game_00001.mp4'
mp4_path = f"sample_data/{video_id}.mp4"
video = read_video(mp4_path, pts_unit="sec")[0].float() / 255
video = video[offset:]
# Initialize action list
def reset():
global x
global actions_list
x = encode(video, vae)
# Initialize with initial action (assumed zero action)
actions_list = []
initial_action = torch.zeros(len(ACTION_KEYS), device=device).unsqueeze(0)
for i in range(n_prompt_frames - 1):
actions_list.append(initial_action)
@torch.inference_mode
def sample(x, actions_tensor, ddim_noise_steps, stabilization_level, alphas_cumprod, noise_range, noise_abs_max, model):
"""
Sample function with constant alpha_next and stabilization_level implemented.
Args:
x (torch.Tensor): Current latent tensor of shape [B, T, C, H, W].
actions_tensor (torch.Tensor): Actions tensor of shape [B, T, num_actions].
ddim_noise_steps (int): Number of DDIM noise steps.
stabilization_level (int): Level to stabilize the initial frames.
alphas_cumprod (torch.Tensor): Cumulative product of alphas for each timestep.
noise_range (torch.Tensor): Noise schedule tensor.
noise_abs_max (float): Maximum absolute noise value.
model (torch.nn.Module): The diffusion model.
Returns:
torch.Tensor: Updated latent tensor after sampling.
"""
B, context_length, C, H, W = x.shape
for noise_idx in reversed(range(1, ddim_noise_steps + 1)):
# Set up noise values
t_ctx = torch.full((B, context_length - 1), stabilization_level - 1, dtype=torch.long, device=device)
t = torch.full((B, 1), noise_range[noise_idx], dtype=torch.long, device=device)
t_next = torch.full((B, 1), noise_range[noise_idx - 1], dtype=torch.long, device=device)
t_next = torch.where(t_next < 0, t, t_next)
t = torch.cat([t_ctx, t], dim=1)
t_next = torch.cat([t_ctx, t_next], dim=1)
# Get model predictions
with autocast("cuda", dtype=torch.half):
v = model(x, t, actions_tensor)
# Compute x_start and x_noise
x_start = alphas_cumprod[t].sqrt() * x - (1 - alphas_cumprod[t]).sqrt() * v
x_noise = ((1 / alphas_cumprod[t]).sqrt() * x - x_start) / (1 / alphas_cumprod[t] - 1).sqrt()
# Compute alpha_next with constant values for context frames
alpha_next = alphas_cumprod[t_next].clone()
alpha_next[:, :-1] = torch.ones_like(alpha_next[:, :-1])
# Ensure the last frame has alpha_next set to 1 if it's the first noise step
if noise_idx == 1:
alpha_next[:, -1:] = torch.ones_like(alpha_next[:, -1:])
# Compute the predicted x
x_pred = alpha_next.sqrt() * x_start + x_noise * (1 - alpha_next).sqrt()
# Update only the last frame in the latent tensor
x[:, -1:] = x_pred[:, -1:]
# Optionally clamp the noise to maintain stability
x[:, -1:] = torch.clamp(x[:, -1:], -noise_abs_max, noise_abs_max)
return x
@torch.inference_mode
def encode(video, vae):
x = video[:n_prompt_frames].unsqueeze(0).to(device)
# VAE encoding
x = rearrange(x, "b t h w c -> (b t) c h w").half()
H, W = x.shape[-2:]
with torch.no_grad():
x = vae.encode(x * 2 - 1).mean * scaling_factor
x = rearrange(x, "(b t) (h w) c -> b t c h w", t=n_prompt_frames, h=H//vae.patch_size, w=W//vae.patch_size)
return x
@torch.inference_mode
def decode(x, vae):
# VAE decoding of the last frame
x_last = x[:, -1:]
x_last = rearrange(x_last, "b t c h w -> (b t) (h w) c").half()
with torch.no_grad():
x_decoded = (vae.decode(x_last / scaling_factor) + 1) / 2
x_decoded = rearrange(x_decoded, "(b t) c h w -> b t h w c", b=1, t=1)
x_decoded = torch.clamp(x_decoded, 0, 1)
x_decoded = (x_decoded * 255).byte().cpu().numpy()
frame = x_decoded[0, 0]
return frame
reset()
# Get alphas
betas = sigmoid_beta_schedule(max_noise_level).to(device)
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_cumprod = rearrange(alphas_cumprod, "T -> T 1 1 1")
# Initialize Pygame font for FPS and adjustment info
pygame.font.init()
font_size = 24
font = pygame.font.SysFont('Arial', font_size)
# Initialize clock
clock = pygame.time.Clock()
# Initialize variables for FPS measurement
frame_times = [] # List to store timestamps of recent frames
fps = 0.0
# Initialize variables for displaying adjustment info
adjustment_message = ""
adjustment_display_time = 0 # Time when the message should stop displaying
# Initialize variable for toggling FPS display
show_fps = True
# Main loop
running = True
mouse_captured = False # Initially not captured
# Center position
center_pos = (screen_width // 2, screen_height // 2)
pygame.mouse.set_pos(center_pos)
reset_context = False
while running:
current_time = time.time()
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_F2:
if mouse_captured:
# Release the mouse
pygame.mouse.set_visible(True)
pygame.event.set_grab(False)
mouse_captured = False
print("Mouse released.")
else:
# Capture the mouse
pygame.mouse.set_visible(False)
pygame.event.set_grab(True)
mouse_captured = True
pygame.mouse.set_pos(center_pos) # Reset to center
pygame.mouse.get_rel() # Reset relative movement
print("Mouse captured.")
elif event.key == pygame.K_F3:
# Toggle FPS display
show_fps = not show_fps
print(f"FPS display toggled to {'ON' if show_fps else 'OFF'}.")
elif event.key == pygame.K_F4:
# Reset Context
reset()
reset_context = True
# Handle '+' and '-' key presses to adjust ddim_noise_steps
elif event.key in [pygame.K_PLUS, pygame.K_EQUALS]:
ddim_noise_steps += 1
if ddim_noise_steps > 100: # Set an upper limit if desired
ddim_noise_steps = 100
# Update noise_range and ctx_max_noise_idx
noise_range = torch.linspace(-1, max_noise_level - 1, ddim_noise_steps + 1).to(device)
ctx_max_noise_idx = ddim_noise_steps // 10 * 3
adjustment_message = f"ddim_noise_steps: {ddim_noise_steps}"
adjustment_display_time = current_time + 2 # Display for 2 seconds
print(adjustment_message)
elif event.key in [pygame.K_MINUS, pygame.K_UNDERSCORE]:
ddim_noise_steps -= 1
if ddim_noise_steps < 1:
ddim_noise_steps = 1
# Update noise_range and ctx_max_noise_idx
noise_range = torch.linspace(-1, max_noise_level - 1, ddim_noise_steps + 1).to(device)
ctx_max_noise_idx = ddim_noise_steps // 10 * 3
adjustment_message = f"ddim_noise_steps: {ddim_noise_steps}"
adjustment_display_time = current_time + 2 # Display for 2 seconds
print(adjustment_message)
elif event.type == pygame.MOUSEBUTTONDOWN:
if not mouse_captured:
# Capture the mouse on mouse click if it's not already captured
pygame.mouse.set_visible(False)
pygame.event.set_grab(True)
mouse_captured = True
pygame.mouse.set_pos(center_pos) # Reset to center
pygame.mouse.get_rel() # Reset relative movement
print("Mouse captured on click.")
if mouse_captured:
# Get relative mouse movement
rel = pygame.mouse.get_rel()
relative_mouse_movement = rel
# Reset mouse position to the center
pygame.mouse.set_pos(center_pos)
else:
relative_mouse_movement = (0, 0)
if not reset_context:
# Capture current action
action = get_current_action(relative_mouse_movement)
actions_curr = action_to_tensor(action).unsqueeze(0) # Shape [1, num_actions]
actions_list.append(actions_curr)
# Generate a random latent for the new frame
chunk = torch.randn((B, 1, *x.shape[-3:]), device=device)
chunk = torch.clamp(chunk, -noise_abs_max, +noise_abs_max)
x = torch.cat([x, chunk], dim=1)
# Implement sliding window for context frames and actions
if x.shape[1] > context_window_size:
x = x[:, -context_window_size:]
actions_list = actions_list[-context_window_size:]
# Prepare actions tensor
actions_tensor = torch.stack(actions_list, dim=1) # Shape [1, context_length, num_actions]
else:
reset_context = False
x = sample(x, actions_tensor, ddim_noise_steps, stabilization_level, alphas_cumprod, noise_range, noise_abs_max, model)
frame = decode(x, vae)
# Convert to surface and display
frame_surface = pygame.surfarray.make_surface(np.transpose(frame, (1, 0, 2)))
frame_surface = pygame.transform.scale(frame_surface, (screen_width, screen_height))
screen.blit(frame_surface, (0, 0))
# --- FPS Counter ---
# Update frame times
frame_times.append(current_time)
# Remove frame times older than 1 second
while frame_times and frame_times[0] < current_time - 1:
frame_times.pop(0)
# Calculate FPS
fps = len(frame_times)
if show_fps:
fps_text = font.render(f"FPS: {fps}", True, (255, 255, 255)) # White color
fps_rect = fps_text.get_rect(topright=(screen_width - 10, 10)) # 10 pixels padding from top-right
screen.blit(fps_text, fps_rect)
# -------------------
# --- Adjustment Info Display ---
if adjustment_message and current_time < adjustment_display_time:
adjustment_text = font.render(adjustment_message, True, (255, 255, 0)) # Yellow color
adjustment_rect = adjustment_text.get_rect(center=(screen_width // 2, 30)) # Top center
screen.blit(adjustment_text, adjustment_rect)
elif current_time >= adjustment_display_time:
adjustment_message = "" # Clear the message
# ---------------------------------
pygame.display.flip()
# Control frame rate
clock.tick(35) # Adjust FPS as needed
pygame.quit()