forked from LeslieZhoa/tensorflow-MTCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
115 lines (99 loc) · 3.95 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# coding: utf-8
# In[1]:
import sys
from detection.MtcnnDetector import MtcnnDetector
from detection.detector import Detector
from detection.fcn_detector import FcnDetector
from train.model import P_Net,R_Net,O_Net
import cv2
import os
import numpy as np
import train.config as config
# In[ ]:
test_mode=config.test_mode
thresh=config.thresh
min_face_size=config.min_face
stride=config.stride
detectors=[None,None,None]
# 模型放置位置
model_path=['model/PNet/','model/RNet/','model/ONet']
batch_size=config.batches
PNet=FcnDetector(P_Net,model_path[0])
detectors[0]=PNet
if test_mode in ["RNet", "ONet"]:
RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
detectors[1] = RNet
if test_mode == "ONet":
ONet = Detector(O_Net, 48, batch_size[2], model_path[2])
detectors[2] = ONet
mtcnn_detector = MtcnnDetector(detectors=detectors, min_face_size=min_face_size,
stride=stride, threshold=thresh)
out_path=config.out_path
if config.input_mode=='1':
#选用图片
path=config.test_dir
#print(path)
for item in os.listdir(path):
img_path=os.path.join(path,item)
img=cv2.imread(img_path)
boxes_c,landmarks=mtcnn_detector.detect(img)
for i in range(boxes_c.shape[0]):
bbox=boxes_c[i,:4]
score=boxes_c[i,4]
corpbbox = [int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])]
#画人脸框
cv2.rectangle(img, (corpbbox[0], corpbbox[1]),
(corpbbox[2], corpbbox[3]), (255, 0, 0), 1)
#判别为人脸的置信度
cv2.putText(img, '{:.2f}'.format(score),
(corpbbox[0], corpbbox[1] - 2),
cv2.FONT_HERSHEY_SIMPLEX, 0.5,(0, 0, 255), 2)
#画关键点
for i in range(landmarks.shape[0]):
for j in range(len(landmarks[i])//2):
cv2.circle(img, (int(landmarks[i][2*j]),int(int(landmarks[i][2*j+1]))), 2, (0,0,255))
cv2.imshow('im',img)
k = cv2.waitKey(0) & 0xFF
if k == 27:
cv2.imwrite(out_path + item,img)
cv2.destroyAllWindows()
if config.input_mode=='2':
cap=cv2.VideoCapture(0)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(out_path+'out.mp4' ,fourcc,10,(640,480))
while True:
t1=cv2.getTickCount()
ret,frame = cap.read()
if ret == True:
boxes_c,landmarks = mtcnn_detector.detect(frame)
t2=cv2.getTickCount()
t=(t2-t1)/cv2.getTickFrequency()
fps=1.0/t
for i in range(boxes_c.shape[0]):
bbox = boxes_c[i, :4]
score = boxes_c[i, 4]
corpbbox = [int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])]
#画人脸框
cv2.rectangle(frame, (corpbbox[0], corpbbox[1]),
(corpbbox[2], corpbbox[3]), (255, 0, 0), 1)
#画置信度
cv2.putText(frame, '{:.2f}'.format(score),
(corpbbox[0], corpbbox[1] - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,(0, 0, 255), 2)
#画fps值
cv2.putText(frame, '{:.4f}'.format(t) + " " + '{:.3f}'.format(fps), (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 2)
#画关键点
for i in range(landmarks.shape[0]):
for j in range(len(landmarks[i])//2):
cv2.circle(frame, (int(landmarks[i][2*j]),int(int(landmarks[i][2*j+1]))), 2, (0,0,255))
a = out.write(frame)
cv2.imshow("result", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
cap.release()
out.release()
cv2.destroyAllWindows()