forked from rui-yan/LeetCode-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
integer-break.cpp
63 lines (58 loc) · 2.04 KB
/
integer-break.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// Time: O(logn), pow is O(logn).
// Space: O(1)
class Solution {
public:
int integerBreak(int n) {
if (n < 4) {
return n - 1;
}
// Proof.
// 1. Let n = a1 + a2 + ... + ak, product = a1 * a2 * ... * ak
// - For each ai >= 4, we can always maximize the product by:
// ai <= 2 * (ai - 2)
// - For each aj >= 5, we can always maximize the product by:
// aj <= 3 * (aj - 3)
//
// Conclusion 1:
// - For n >= 4, the max of the product must be in the form of
// 3^a * 2^b, s.t. 3a + 2b = n
//
// 2. To maximize the product = 3^a * 2^b s.t. 3a + 2b = n
// - For each b >= 3, we can always maximize the product by:
// 3^a * 2^b <= 3^(a+2) * 2^(b-3) s.t. 3(a+2) + 2(b-3) = n
//
// Conclusion 2:
// - For n >= 4, the max of the product must be in the form of
// 3^Q * 2^R, 0 <= R < 3 s.t. 3Q + 2R = n
// i.e.
// if n = 3Q + 0, the max of the product = 3^Q * 2^0
// if n = 3Q + 2, the max of the product = 3^Q * 2^1
// if n = 3Q + 2*2, the max of the product = 3^Q * 2^2
int res = 0;
if (n % 3 == 0) { // n = 3Q + 0, the max is 3^Q * 2^0
res = pow(3, n / 3);
} else if (n % 3 == 2) { // n = 3Q + 2, the max is 3^Q * 2^1
res = pow(3, n / 3) * 2;
} else { // n = 3Q + 4, the max is 3^Q * 2^2
res = pow(3, n / 3 - 1) * 4;
}
return res;
}
};
// Time: O(n)
// Space: O(1)
// DP solution.
class Solution2 {
public:
int integerBreak(int n) {
if (n < 4) {
return n - 1;
}
// integerBreak(n) = max(integerBreak(n - 2) * 2, integerBreak(n - 3) * 3)
vector<int> res{0, 1, 2, 3};
for (int i = 4; i <= n; ++i) {
res[i % 4] = max(res[(i - 2) % 4] * 2, res[(i - 3) % 4] * 3);
}
return res[n % 4];
}
};