forked from skyhehe123/VoxelNet-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_aug.py
142 lines (127 loc) · 5.1 KB
/
data_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
from config import config as cfg
import cv2
import matplotlib.pyplot as plt
def draw_polygon(img, box_corner, color = (255, 255, 255),thickness = 1):
tup0 = (box_corner[0, 1],box_corner[0, 0])
tup1 = (box_corner[1, 1],box_corner[1, 0])
tup2 = (box_corner[2, 1],box_corner[2, 0])
tup3 = (box_corner[3, 1],box_corner[3, 0])
cv2.line(img, tup0, tup1, color, thickness, cv2.LINE_AA)
cv2.line(img, tup1, tup2, color, thickness, cv2.LINE_AA)
cv2.line(img, tup2, tup3, color, thickness, cv2.LINE_AA)
cv2.line(img, tup3, tup0, color, thickness, cv2.LINE_AA)
return img
def point_transform(points, tx, ty, tz, rx=0, ry=0, rz=0):
# Input:
# points: (N, 3)
# rx/y/z: in radians
# Output:
# points: (N, 3)
N = points.shape[0]
points = np.hstack([points, np.ones((N, 1))])
mat1 = np.eye(4)
mat1[3, 0:3] = tx, ty, tz
points = np.matmul(points, mat1)
if rx != 0:
mat = np.zeros((4, 4))
mat[0, 0] = 1
mat[3, 3] = 1
mat[1, 1] = np.cos(rx)
mat[1, 2] = -np.sin(rx)
mat[2, 1] = np.sin(rx)
mat[2, 2] = np.cos(rx)
points = np.matmul(points, mat)
if ry != 0:
mat = np.zeros((4, 4))
mat[1, 1] = 1
mat[3, 3] = 1
mat[0, 0] = np.cos(ry)
mat[0, 2] = np.sin(ry)
mat[2, 0] = -np.sin(ry)
mat[2, 2] = np.cos(ry)
points = np.matmul(points, mat)
if rz != 0:
mat = np.zeros((4, 4))
mat[2, 2] = 1
mat[3, 3] = 1
mat[0, 0] = np.cos(rz)
mat[0, 1] = -np.sin(rz)
mat[1, 0] = np.sin(rz)
mat[1, 1] = np.cos(rz)
points = np.matmul(points, mat)
return points[:, 0:3]
def box_transform(boxes_corner, tx, ty, tz, r=0):
# boxes_corner (N, 8, 3)
for idx in range(len(boxes_corner)):
boxes_corner[idx] = point_transform(boxes_corner[idx], tx, ty, tz, rz=r)
return boxes_corner
def cal_iou2d(box1_corner, box2_corner):
box1_corner = np.reshape(box1_corner, [4, 2])
box2_corner = np.reshape(box2_corner, [4, 2])
box1_corner = ((cfg.W, cfg.H)-(box1_corner - (cfg.xrange[0], cfg.yrange[0])) / (cfg.vw, cfg.vh)).astype(np.int32)
box2_corner = ((cfg.W, cfg.H)-(box2_corner - (cfg.xrange[0], cfg.yrange[0])) / (cfg.vw, cfg.vh)).astype(np.int32)
buf1 = np.zeros((cfg.H, cfg.W, 3))
buf2 = np.zeros((cfg.H, cfg.W, 3))
buf1 = cv2.fillConvexPoly(buf1, box1_corner, color=(1,1,1))[..., 0]
buf2 = cv2.fillConvexPoly(buf2, box2_corner, color=(1,1,1))[..., 0]
indiv = np.sum(np.absolute(buf1-buf2))
share = np.sum((buf1 + buf2) == 2)
if indiv == 0:
return 0.0 # when target is out of bound
return share / (indiv + share)
def aug_data(lidar, gt_box3d_corner):
np.random.seed()
choice = np.random.randint(1, 10)
if choice >= 7:
for idx in range(len(gt_box3d_corner)):
# TODO: precisely gather the point
is_collision = True
_count = 0
while is_collision and _count < 100:
t_rz = np.random.uniform(-np.pi / 10, np.pi / 10)
t_x = np.random.normal()
t_y = np.random.normal()
t_z = np.random.normal()
# check collision
tmp = box_transform(
gt_box3d_corner[[idx]], t_x, t_y, t_z, t_rz)
is_collision = False
for idy in range(idx):
iou = cal_iou2d(tmp[0,:4,:2],gt_box3d_corner[idy,:4,:2])
if iou > 0:
is_collision = True
_count += 1
break
if not is_collision:
box_corner = gt_box3d_corner[idx]
minx = np.min(box_corner[:, 0])
miny = np.min(box_corner[:, 1])
minz = np.min(box_corner[:, 2])
maxx = np.max(box_corner[:, 0])
maxy = np.max(box_corner[:, 1])
maxz = np.max(box_corner[:, 2])
bound_x = np.logical_and(
lidar[:, 0] >= minx, lidar[:, 0] <= maxx)
bound_y = np.logical_and(
lidar[:, 1] >= miny, lidar[:, 1] <= maxy)
bound_z = np.logical_and(
lidar[:, 2] >= minz, lidar[:, 2] <= maxz)
bound_box = np.logical_and(
np.logical_and(bound_x, bound_y), bound_z)
lidar[bound_box, 0:3] = point_transform(
lidar[bound_box, 0:3], t_x, t_y, t_z, rz=t_rz)
gt_box3d_corner[idx] = box_transform(
gt_box3d_corner[[idx]], t_x, t_y, t_z, t_rz)
gt_box3d = gt_box3d_corner
elif choice < 7 and choice >= 4:
# global rotation
angle = np.random.uniform(-np.pi / 4, np.pi / 4)
lidar[:, 0:3] = point_transform(lidar[:, 0:3], 0, 0, 0, rz=angle)
gt_box3d = box_transform(gt_box3d_corner, 0, 0, 0, r=angle)
else:
# global scaling
factor = np.random.uniform(0.95, 1.05)
lidar[:, 0:3] = lidar[:, 0:3] * factor
gt_box3d = gt_box3d_corner * factor
return lidar, gt_box3d