-
Notifications
You must be signed in to change notification settings - Fork 13
/
train_cifar_mix.py
394 lines (319 loc) · 15.2 KB
/
train_cifar_mix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# This code is constructed based on Pytorch Implementation of MixMatch(https://github.com/YU1ut/MixMatch-pytorch)
from __future__ import print_function
import argparse
import os
import time
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data as data
import models.wrn as models
import dataset.mix_cifar10 as dataset_cifar10
import dataset.mix_cifar100 as dataset_cifar100
from utils import make_imb_data, save_checkpoint, MixMatch_Loss, WeightEMA, interleave
from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p
parser = argparse.ArgumentParser(description='PyTorch MixMatch Training')
# Optimization options
parser.add_argument('--epochs', default=500, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('--batch-size', default=64, type=int, metavar='N', help='train batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.002, type=float, metavar='LR', help='initial learning rate')
# Checkpoints
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--out', default='result', help='Directory to output the result')
# Method options
parser.add_argument('--dataset', type=str, default='cifar10', help='cifar10 or cifar100')
parser.add_argument('--num_max', type=int, default=1500, help='Number of samples in the maximal class')
parser.add_argument('--ratio', type=float, default=2.0, help='Relative size between labeled and unlabeled data')
parser.add_argument('--imb_ratio_l', type=int, default=100, help='Imbalance ratio for labeled data')
parser.add_argument('--imb_ratio_u', type=int, default=100, help='Imbalance ratio for unlabeled data')
parser.add_argument('--step', action='store_true', help='Type of class-imbalance')
parser.add_argument('--val-iteration', type=int, default=500, help='Frequency for the evaluation')
# Hyperparameters for MixMatch
parser.add_argument('--mix_alpha', default=0.75, type=float)
parser.add_argument('--lambda-u', default=75, type=float)
parser.add_argument('--T', default=0.5, type=float)
parser.add_argument('--ema-decay', default=0.999, type=float)
# Miscs
parser.add_argument('--manualSeed', type=int, default=0, help='manual seed')
parser.add_argument('--gpu', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
np.random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
cudnn.benchmark = False
if use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
torch.backends.cudnn.deterministic = True
best_acc = 0 # best test accuracy
if args.dataset == 'cifar10':
num_class = 10
elif args.dataset == 'cifar100':
num_class = 100
else:
raise NotImplementedError
def main():
global best_acc
if not os.path.isdir(args.out):
mkdir_p(args.out)
# Data
print(f'==> Preparing imbalanced {args.dataset}')
N_SAMPLES_PER_CLASS = make_imb_data(args.num_max, num_class, args.imb_ratio_l)
U_SAMPLES_PER_CLASS = make_imb_data(args.ratio * args.num_max, num_class, args.imb_ratio_u)
if args.dataset == 'cifar10':
train_labeled_set, train_unlabeled_set, test_set = dataset_cifar10.get_cifar10('/BS/databases00/cifar-10',
N_SAMPLES_PER_CLASS,
U_SAMPLES_PER_CLASS, seed=args.manualSeed)
elif args.dataset == 'cifar100':
train_labeled_set, train_unlabeled_set, test_set = dataset_cifar100.get_cifar100('/BS/databases00/cifar-100',
N_SAMPLES_PER_CLASS,
U_SAMPLES_PER_CLASS, seed=args.manualSeed)
else:
raise NotImplementedError
labeled_trainloader = data.DataLoader(train_labeled_set, batch_size=args.batch_size, shuffle=True, num_workers=4,
drop_last=True)
unlabeled_trainloader = data.DataLoader(train_unlabeled_set, batch_size=args.batch_size, shuffle=True, num_workers=4,
drop_last=True)
test_loader = data.DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=4)
# Model
print("==> creating WRN-28-2")
def create_model(ema=False):
model = models.WRN(2, num_class)
model = model.cuda()
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
ema_model = create_model(ema=True)
print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
train_criterion = MixMatch_Loss(args.lambda_u, args.epochs)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
ema_optimizer = WeightEMA(model, ema_model, args.lr, alpha=args.ema_decay)
start_epoch = 0
# Resume
title = 'imb-cifar-10'
if args.resume:
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
args.out = os.path.dirname(args.resume)
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
ema_model.load_state_dict(checkpoint['ema_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger = Logger(os.path.join(args.out, 'log.txt'), title=title, resume=True)
else:
logger = Logger(os.path.join(args.out, 'log.txt'), title=title)
logger.set_names(['Train Loss', 'Train Loss X', 'Train Loss U', 'Total Acc.', 'Test Loss', 'Test Acc.', 'Test GM.'])
test_accs = []
test_gms = []
# Main function
for epoch in range(start_epoch, args.epochs):
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, state['lr']))
train_loss, train_loss_x, train_loss_u, total_c = train(labeled_trainloader,
unlabeled_trainloader,
model, optimizer,
ema_optimizer,
train_criterion,
epoch, use_cuda)
# Evaluation part
test_loss, test_acc, test_cls, test_gm = validate(test_loader, ema_model, criterion, use_cuda, mode='Test Stats ')
# Append logger file
logger.append([train_loss, train_loss_x, train_loss_u, total_c, test_loss, test_acc, test_gm])
# Save models
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'ema_state_dict': ema_model.state_dict(),
'optimizer': optimizer.state_dict(),
}, epoch, args.out)
test_accs.append(test_acc)
test_gms.append(test_gm)
logger.close()
# Print the final results
print('Mean bAcc:')
print(np.mean(test_accs[-20:]))
print('Mean GM:')
print(np.mean(test_gms[-20:]))
print('Name of saved folder:')
print(args.out)
def train(labeled_trainloader, unlabeled_trainloader, model, optimizer, ema_optimizer, criterion, epoch, use_cuda):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_x = AverageMeter()
losses_u = AverageMeter()
total_c = AverageMeter()
ws = AverageMeter()
end = time.time()
bar = Bar('Training', max=args.val_iteration)
labeled_train_iter = iter(labeled_trainloader)
unlabeled_train_iter = iter(unlabeled_trainloader)
model.train()
for batch_idx in range(args.val_iteration):
try:
inputs_x, targets_x, _ = labeled_train_iter.next()
except:
labeled_train_iter = iter(labeled_trainloader)
inputs_x, targets_x, _ = labeled_train_iter.next()
try:
(inputs_u, inputs_u2), gt_targets_u, idx_u = unlabeled_train_iter.next()
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
(inputs_u, inputs_u2), gt_targets_u, idx_u = unlabeled_train_iter.next()
# Measure data loading time
data_time.update(time.time() - end)
batch_size = inputs_x.size(0)
# Transform label to one-hot
targets_x = torch.zeros(batch_size, num_class).scatter_(1, targets_x.view(-1,1), 1)
if use_cuda:
inputs_x, targets_x = inputs_x.cuda(), targets_x.cuda(non_blocking=True)
inputs_u, inputs_u2 = inputs_u.cuda(), inputs_u2.cuda()
# Generate the pseudo labels by aggregation and sharpening
with torch.no_grad():
outputs_u, _ = model(inputs_u)
outputs_u2, _ = model(inputs_u2)
p = (torch.softmax(outputs_u, dim=1) + torch.softmax(outputs_u2, dim=1)) / 2
pt = p ** (1 / args.T)
targets_u = pt / pt.sum(dim=1, keepdim=True)
max_p, p_hat = torch.max(targets_u, dim=1)
total_acc = p_hat.cpu().eq(gt_targets_u).float().view(-1)
total_c.update(total_acc.mean(0).item())
# Mixup
all_inputs = torch.cat([inputs_x, inputs_u, inputs_u2], dim=0)
all_targets = torch.cat([targets_x, targets_u, targets_u], dim=0)
l = np.random.beta(args.mix_alpha, args.mix_alpha)
l = max(l, 1-l)
idx = torch.randperm(all_inputs.size(0))
input_a, input_b = all_inputs, all_inputs[idx]
target_a, target_b = all_targets, all_targets[idx]
mixed_input = l * input_a + (1 - l) * input_b
mixed_target = l * target_a + (1 - l) * target_b
# interleave labeled and unlabed samples between batches to get correct batchnorm calculation
mixed_input = list(torch.split(mixed_input, batch_size))
mixed_input = interleave(mixed_input, batch_size)
logits = [model(mixed_input[0])[0]]
for input in mixed_input[1:]:
logits.append(model(input)[0])
# put interleaved samples back
logits = interleave(logits, batch_size)
logits_x = logits[0]
logits_u = torch.cat(logits[1:], dim=0)
Lx, Lu, w = criterion(logits_x, mixed_target[:batch_size], logits_u, mixed_target[batch_size:],
epoch+batch_idx/args.val_iteration)
loss = Lx + w * Lu
# record loss
losses.update(loss.item(), inputs_x.size(0))
losses_x.update(Lx.item(), inputs_x.size(0))
losses_u.update(Lu.item(), inputs_x.size(0))
ws.update(w, inputs_x.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
ema_optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | ' \
'Loss: {loss:.4f} | Loss_x: {loss_x:.4f} | Loss_u: {loss_u:.4f} | Total_acc: {total_c:.4f}'.format(
batch=batch_idx + 1,
size=args.val_iteration,
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
loss_x=losses_x.avg,
loss_u=losses_u.avg,
total_c=total_c.avg,
)
bar.next()
bar.finish()
return (losses.avg, losses_x.avg, losses_u.avg, total_c.avg)
def validate(valloader, model, criterion, use_cuda, mode):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
bar = Bar(f'{mode}', max=len(valloader))
classwise_correct = torch.zeros(num_class).cuda()
classwise_num = torch.zeros(num_class).cuda()
section_acc = torch.zeros(3).cuda()
y_true = []
y_pred = []
with torch.no_grad():
for batch_idx, (inputs, targets, _) in enumerate(valloader):
# measure data loading time
data_time.update(time.time() - end)
y_true.extend(targets.tolist())
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda(non_blocking=True)
# compute output
outputs, _ = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# classwise prediction
pred_label = outputs.max(1)[1]
y_pred.extend(pred_label.tolist())
pred_mask = (targets == pred_label).float()
for i in range(num_class):
class_mask = (targets == i).float()
classwise_correct[i] += (class_mask * pred_mask).sum()
classwise_num[i] += class_mask.sum()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | ' \
'Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(valloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
# Major, Neutral, Minor
section_num = int(num_class / 3)
classwise_acc = (classwise_correct / classwise_num)
section_acc[0] = classwise_acc[:section_num].mean()
section_acc[2] = classwise_acc[-1 * section_num:].mean()
section_acc[1] = classwise_acc[section_num:-1 * section_num].mean()
GM = 1
for i in range(num_class):
if classwise_acc[i] == 0:
# To prevent the N/A values, we set the minimum value as 0.001
GM *= (1/(100 * num_class)) ** (1/num_class)
else:
GM *= (classwise_acc[i]) ** (1/num_class)
return (losses.avg, top1.avg, section_acc.cpu().numpy(), GM)
if __name__ == '__main__':
main()