diff --git a/jsk_perception/node_scripts/edge_finder.py b/jsk_perception/node_scripts/edge_finder.py new file mode 100755 index 0000000000..1853cf23ae --- /dev/null +++ b/jsk_perception/node_scripts/edge_finder.py @@ -0,0 +1,270 @@ +#!/usr/bin/env python +# -*- coding:utf-8 -*- + +import cv2 +import cv_bridge +import geometry_msgs.msg +from image_geometry.cameramodels import PinholeCameraModel +from jsk_recognition_msgs.msg import BoundingBox +from jsk_recognition_msgs.msg import BoundingBoxArray +from jsk_topic_tools import ConnectionBasedTransport +import message_filters +import numpy as np +import rospy +import sensor_msgs.msg +import std_msgs.msg +import tf +from tf.transformations import quaternion_from_matrix +from tf.transformations import unit_vector as normalize_vector +from pyquaternion import Quaternion + + +def outer_product_matrix(v): + return np.array([[0, -v[2], v[1]], + [v[2], 0, -v[0]], + [-v[1], v[0], 0]]) + + +def cross_product(a, b): + return np.dot(outer_product_matrix(a), b) + + +def rotation_matrix_from_axis( + first_axis=(1, 0, 0), second_axis=(0, 1, 0), axes='xy'): + if axes not in ['xy', 'yx', 'xz', 'zx', 'yz', 'zy']: + raise ValueError("Valid axes are 'xy', 'yx', 'xz', 'zx', 'yz', 'zy'.") + e1 = normalize_vector(first_axis) + e2 = normalize_vector(second_axis - np.dot(second_axis, e1) * e1) + if axes in ['xy', 'zx', 'yz']: + third_axis = cross_product(e1, e2) + else: + third_axis = cross_product(e2, e1) + e3 = normalize_vector( + third_axis - np.dot(third_axis, e1) * e1 - np.dot(third_axis, e2) * e2) + first_index = ord(axes[0]) - ord('x') + second_index = ord(axes[1]) - ord('x') + third_index = ((first_index + 1) ^ (second_index + 1)) - 1 + indices = [first_index, second_index, third_index] + return np.vstack([e1, e2, e3])[np.argsort(indices)].T + + +def unit_normal(a, b, c): + x = np.linalg.det([[1, a[1], a[2]], + [1, b[1], b[2]], + [1, c[1], c[2]]]) + y = np.linalg.det([[a[0], 1, a[2]], + [b[0], 1, b[2]], + [c[0], 1, c[2]]]) + z = np.linalg.det([[a[0], a[1], 1], + [b[0], b[1], 1], + [c[0], c[1], 1]]) + magnitude = (x**2 + y**2 + z**2)**.5 + return (x / magnitude, y / magnitude, z / magnitude) + + +def transform_position(ps_list, source_frame, target_frame): + listener = tf.TransformListener() + listener.waitForTransform(source_frame, target_frame, rospy.Time(0), rospy.Duration(3.0)) + (trans, rot) = listener.lookupTransform(source_frame, target_frame, rospy.Time(0)) + trans_np = np.asarray([trans[0], trans[1], trans[2]]) + q = Quaternion(rot[3], rot[0], rot[1], rot[2]) + rotation_matrix = q.rotation_matrix + ps_list_transformed = np.dot(rotation_matrix, ps_list) + trans_np + return ps_list_transformed + +class EdgeDetector(object): + + def __init__(self, + length_threshold=10, + distance_threshold=1.41421356, + canny_th1=50.0, + canny_th2=50.0, + canny_aperture_size=3, + do_merge=False): + self.lsd = cv2.ximgproc.createFastLineDetector( + length_threshold, + distance_threshold, + canny_th1, + canny_th2, + canny_aperture_size, + do_merge) + + def find_edges(self, img): + gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) + line_segments = self.lsd.detect(gray) + + if line_segments is None: + line_segments = [] + + return line_segments + + +def draw_edges(image, edges): + for edge in edges: + x1, y1, x2, y2 = map(int, edge[0][:4]) + cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2) + + +class EdgeFinder(ConnectionBasedTransport): + + def __init__(self): + super(EdgeFinder, self).__init__() + self.edge_detector = EdgeDetector() + self.length_tolerance = rospy.get_param( + '~length_tolerance', 0.04) + self.target_frame = rospy.get_param('~target_frame', "odom") + self.ps_list_a_x = rospy.get_param('~ps_list_a_x', 0) + self.ps_list_a_y = rospy.get_param('~ps_list_a_y', 0) + self.ps_list_a_z = rospy.get_param('~ps_list_a_z', 0) + self.ps_list_b_x = rospy.get_param('~ps_list_b_x', 0) + self.ps_list_b_y = rospy.get_param('~ps_list_b_y', 0) + self.ps_list_b_z = rospy.get_param('~ps_list_b_z', 0) + self.image_pub = self.advertise('~output/viz', + sensor_msgs.msg.Image, + queue_size=1) + self.bridge = cv_bridge.CvBridge() + self.camera_info_msg = None + self.cameramodel = None + + def subscribe(self): + queue_size = rospy.get_param('~queue_size', 10) + if rospy.get_param('~with_depth', True): + sub_img = message_filters.Subscriber( + '~input', + sensor_msgs.msg.Image, + queue_size=1, + buff_size=2**24) + sub_depth = message_filters.Subscriber( + '~input/depth', + sensor_msgs.msg.Image, + queue_size=1, + buff_size=2**24) + self.subs = [sub_img, sub_depth] + self.sub_info = rospy.Subscriber( + '~input/camera_info', + sensor_msgs.msg.CameraInfo, self._cb_cam_info) + + if rospy.get_param('~approximate_sync', True): + slop = rospy.get_param('~slop', 0.1) + sync = message_filters.ApproximateTimeSynchronizer( + fs=self.subs, queue_size=queue_size, slop=slop) + else: + sync = message_filters.TimeSynchronizer( + fs=self.subs, queue_size=queue_size) + sync.registerCallback(self._cb_with_depth) + else: + sub = rospy.Subscriber( + '~input', + sensor_msgs.msg.Image, + callback=self._cb, + queue_size=queue_size) + self.subs = [sub] + + def unsubscribe(self): + for s in self.subs: + s.unregister() + + def _cb_cam_info(self, msg): + self.camera_info_msg = msg + self.cameramodel = PinholeCameraModel() + self.cameramodel.fromCameraInfo(msg) + self.sub_info.unregister() + self.sub_info = None + rospy.loginfo("Received camera info") + + def _cb(self, msg): + bridge = self.bridge + try: + cv_image = bridge.imgmsg_to_cv2( + msg, 'bgr8') + except cv_bridge.CvBridgeError as e: + rospy.logerr('{}'.format(e)) + return + squares = self.edge_detector.find_edges(cv_image) + + if self.visualize: + draw_squares(cv_image, squares) + vis_msg = bridge.cv2_to_imgmsg(cv_image, encoding='bgr8') + vis_msg.header.stamp = msg.header.stamp + self.image_pub.publish(vis_msg) + + def _cb_with_depth(self, img_msg, depth_msg): + if self.camera_info_msg is None or self.cameramodel is None: + rospy.loginfo("Waiting camera info ...") + return + bridge = self.bridge + try: + cv_image = bridge.imgmsg_to_cv2(img_msg, 'bgr8') + depth_img = bridge.imgmsg_to_cv2(depth_msg, 'passthrough') + + if depth_msg.encoding == '16UC1': + depth_img = np.asarray(depth_img, dtype=np.float32) + depth_img /= 1000.0 # convert metric: mm -> m + elif depth_msg.encoding != '32FC1': + rospy.logerr('Unsupported depth encoding: %s' % + depth_msg.encoding) + except cv_bridge.CvBridgeError as e: + rospy.logerr('{}'.format(e)) + return + height, width, _ = cv_image.shape + cameramodel = self.cameramodel + + # model line + ps_list_a = np.array([self.ps_list_a_x, self.ps_list_a_y, self.ps_list_a_z]) + ps_list_b = np.array([self.ps_list_b_x, self.ps_list_b_y, self.ps_list_b_z]) + source_frame = '/' + self.camera_info_msg.header.frame_id + target_frame = self.target_frame + ps_list_transformed_a = transform_position(ps_list_a, source_frame, target_frame) + ps_list_transformed_b = transform_position(ps_list_b, source_frame, target_frame) + + ps_list_transformed_pixel_u_a = int((ps_list_transformed_a[0] / ps_list_transformed_a[2] * cameramodel.fx() + cameramodel.cx())) + ps_list_transformed_pixel_v_a = int((ps_list_transformed_a[1] / ps_list_transformed_a[2] * cameramodel.fy() + cameramodel.cy())) + ps_list_transformed_pixel_u_b = int((ps_list_transformed_b[0] / ps_list_transformed_b[2] * cameramodel.fx() + cameramodel.cx())) + ps_list_transformed_pixel_v_b = int((ps_list_transformed_b[1] / ps_list_transformed_b[2] * cameramodel.fy() + cameramodel.cy())) + model_line_len = (self.ps_list_b_x - self.ps_list_a_x) ** 2 + (self.ps_list_b_y - self.ps_list_a_y) ** 2 + (self.ps_list_b_z - self.ps_list_a_z) ** 2 + model_line_cetnter = np.array([(self.ps_list_a_x + self.ps_list_b_x) / 2, (self.ps_list_a_y + self.ps_list_b_y) / 2, (self.ps_list_a_z + self.ps_list_b_z) / 2]) + model_line_direction = np.array([self.ps_list_b_x - self.ps_list_a_x, self.ps_list_b_y - self.ps_list_a_y, self.ps_list_b_z - self.ps_list_a_z]) + + edges = self.edge_detector.find_edges(cv_image) + np_edges = np.array(edges, dtype=np.int32).reshape(-1, 4) + np_edges_3d = np.zeros_like(np_edges) + + # edges len + np_edges_3d[:, 0] = (np_edges[:, 0] - cameramodel.cx()) / cameramodel.fx() + np_edges_3d[:, 2] = (np_edges[:, 2] - cameramodel.cx()) / cameramodel.fx() + np_edges_3d[:, 1] = (np_edges[:, 1] - cameramodel.cy()) / cameramodel.fy() + np_edges_3d[:, 3] = (np_edges[:, 3] - cameramodel.cy()) / cameramodel.fy() + z1 = depth_img.reshape(-1)[np_edges[:, 1] * width + np_edges[:, 0]] + z2 = depth_img.reshape(-1)[np_edges[:, 3] * width + np_edges[:, 2]] + np_edges_3d[:, 0] = np_edges_3d[:, 0] * z1 + np_edges_3d[:, 1] = np_edges_3d[:, 1] * z1 + np_edges_3d[:, 2] = np_edges_3d[:, 2] * z2 + np_edges_3d[:, 3] = np_edges_3d[:, 3] * z2 + edges_len = np.sqrt((np_edges[:, 2] - np_edges[:, 0]) ** 2 + (np_edges[:, 3] - np_edges[:, 1]) ** 2 + (z2 - z1) ** 2) + print(edges_len) + + # edges center + cx = (np_edges_3d[:, 0] + np_edges_3d[:, 2]) / 2 + cy = (np_edges_3d[:, 1] + np_edges_3d[:, 3]) / 2 + cz = (z1 + z2) / 2 + np_edges_3d_center = np.column_stack((cx, cy, cz)) + + # edges direction + np_edges_3d_direction = (np_edges_3d[:, 2] - np_edges_3d[:, 0], np_edges_3d[:, 3] - np_edges_3d[:, 1], z2 - z1) + + if self.visualize: + draw_edges(cv_image, edges) + cv2.line(cv_image, (ps_list_transformed_pixel_u_a, ps_list_transformed_pixel_v_a), (ps_list_transformed_pixel_u_b, ps_list_transformed_pixel_v_b), (255, 0, 0), 5) + vis_msg = bridge.cv2_to_imgmsg(cv_image, encoding='bgr8') + vis_msg.header.stamp = img_msg.header.stamp + self.image_pub.publish(vis_msg) + + @property + def visualize(self): + return self.image_pub.get_num_connections() > 0 + + +if __name__ == '__main__': + rospy.init_node('edge_finder') + act = EdgeFinder() + rospy.spin()