-
Notifications
You must be signed in to change notification settings - Fork 0
/
Object_Detection_NEW.py
99 lines (77 loc) · 3.1 KB
/
Object_Detection_NEW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import cv2
import numpy as np
# Load YOLO
print("LOADING YOLO")
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
# Save all the names in the file to the list classes
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# Get layers of the network
layer_names = net.getLayerNames()
# Determine the output layer names from the YOLO model
output_layers = [i for i in range(len(layer_names)) if layer_names[i].endswith("yolo_")]
print("YOLO LOADED")
# Open a connection to the camera
cap = cv2.VideoCapture(0) # 0 corresponds to the default camera, change it if you have multiple cameras
# Check if the camera opened successfully
if not cap.isOpened():
print("Error: Failed to open camera.")
exit()
while True:
# Read and preprocess the input frame from the camera
ret, frame = cap.read()
# Check if frame retrieval was successful
if not ret:
print("Error: Unable to retrieve frame from the camera.")
break
height, width, channels = frame.shape
# Using the blob function of OpenCV to preprocess the frame
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
# Detecting objects
net.setInput(blob)
outs = net.forward(output_layers)
# Showing information on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# Use NMS function in OpenCV to perform Non-maximum Suppression
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
colors = np.random.uniform(0, 255, size=(len(classes), 3))
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
color = colors[class_ids[i]]
# Display object name and confidence
text = f"{label}: {confidence:.2f}"
# Display the object name and confidence above the rectangle
cv2.putText(frame, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Draw the rectangle and label on the frame
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
# Display the frame with detected objects
cv2.imshow("Live Object Detection", frame)
# Break the loop if 'q' key is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the camera and close all windows
cap.release()
cv2.destroyAllWindows()