-
Notifications
You must be signed in to change notification settings - Fork 0
/
object_detect.py
72 lines (55 loc) · 2.03 KB
/
object_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import cv2
import numpy as np
# Load YOLO
print("LOADING YOLO")
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
# Save all the names in the file to the list classes
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# Get layers of the network
layer_names = net.getLayerNames()
# Determine the output layer names from the YOLO model
output_layers = [i for i in range(len(layer_names)) if layer_names[i].endswith("yolo_")]
print("YOLO LOADED")
# Read and preprocess the input image
img = cv2.imread("Sample.jpg")
height, width, channels = img.shape
# Using the blob function of OpenCV to preprocess the image
blob = cv2.dnn.blobFromImage(img, 1 / 255.0, (416, 416), swapRB=True, crop=False)
# Detecting objects
net.setInput(blob)
outs = net.forward(output_layers)
# Showing information on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# Use NMS function in OpenCV to perform Non-maximum Suppression
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
colors = np.random.uniform(0, 255, size=(len(classes), 3))
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[class_ids[i]]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
cv2.imshow("Image", img)
cv2.waitKey(0)