-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadditive_combinatorics_anki.tex
868 lines (790 loc) · 32.6 KB
/
additive_combinatorics_anki.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
% To use these notes, you must copy anki_header.tex
% into the header of your card type in Anki
% layout in Anki:
\documentclass[10pt]{article}
\usepackage[a4paper]{geometry}
\geometry{paperwidth=.5\paperwidth,paperheight=100in,left=2em,right=2em,bottom=1em,top=2em}
\pagestyle{empty}
\setlength{\parindent}{0in}
% encoding:
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{lmodern}
% packages:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{centernot}
\usepackage{parskip}
% Theorem-like environments
\theoremstyle{definition}
\newtheorem*{claim}{Claim}
\newtheorem*{conjecture}{Conjecture}
% Command redirections
\let\P\oldP
\let\oldemptyset\emptyset
\let\emptyset\varnothing
% Letter shorthands
\newcommand{\C}{\mathbb C}
\newcommand{\E}{\mathbb E}
\newcommand{\F}{\mathbb F}
\newcommand{\K}{\mathbb K}
\newcommand{\N}{\mathbb N}
\newcommand{\P}{\mathbb P}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\Z}{\mathbb Z}
\newcommand{\mcA}{\mathcal A}
\newcommand{\mcB}{\mathcal B}
\newcommand{\mcC}{\mathcal C}
\newcommand{\mcD}{\mathcal D}
\newcommand{\mcE}{\mathcal E}
\newcommand{\mcF}{\mathcal F}
\newcommand{\mcG}{\mathcal G}
\newcommand{\mcH}{\mathcal H}
\newcommand{\mcM}{\mathcal M}
\newcommand{\mcN}{\mathcal N}
\newcommand{\mcO}{\mathcal O}
\newcommand{\mcP}{\mathcal P}
\newcommand{\mcQ}{\mathcal Q}
\newcommand{\mcR}{\mathcal R}
\newcommand{\mcS}{\mathcal S}
\newcommand{\mcT}{\mathcal T}
\newcommand{\mcU}{\mathcal U}
\newcommand{\mcV}{\mathcal V}
\newcommand{\eps}{\varepsilon}
\newcommand{\Eps}{\mathcal E}
\newcommand{\curlybrack}[1]{\left\{ #1\right\}}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\norm}[1]{\left\lVert #1\right\rVert}
\newcommand{\inn}[2]{\left\langle #1, #2\right\rangle}
\newcommand{\floor}[1]{\left\lfloor #1\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil #1\right\rceil}
\newcommand{\doublesqbrack}[1]{[\![#1]\!]}
\newcommand{\imp}{\implies}
\newcommand{\for}{\forall}
\newcommand{\nin}{\notin}
\newcommand{\comp}{\circ}
\newcommand{\union}{\cup}
\newcommand{\inter}{\cap}
\newcommand{\Union}{\bigcup}
\newcommand{\Inter}{\bigcap}
\newcommand{\hatplus}{\mathbin{\widehat{+}}}
\newcommand{\symdif}{\mathbin\varbigtriangleup}
\newcommand{\aeeq}{\overset{\text{ae}}=}
\newcommand{\lexlt}{\overset{\text{lex}}<}
\newcommand{\colexlt}{\overset{\text{colex}}<}
\newcommand{\wto}{\overset w\to}
\newcommand{\wstarto}{\overset{w*}\to}
\renewcommand{\vec}[1]{\boldsymbol{\mathbf{#1}}}
\renewcommand{\bar}[1]{\overline{#1}}
\let\Im\relax
\let\Re\relax
\DeclareMathOperator{\Ber}{Ber}
\DeclareMathOperator{\conv}{conv}
\DeclareMathOperator{\diam}{diam}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\esssup}{ess sup}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\Im}{Im}
\DeclareMathOperator{\interior}{int}
\DeclareMathOperator{\lhs}{LHS}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\Re}{Re}
\DeclareMathOperator{\rhs}{RHS}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\Var}{Var}
% pdf layout:
\geometry{paperheight=74.25mm}
\usepackage{pgfpages}
\pagestyle{empty}
\pgfpagesuselayout{8 on 1}[a4paper,border shrink=0cm]
\makeatletter
\@tempcnta=1\relax
\loop\ifnum\@tempcnta<9\relax
\pgf@pset{\the\@tempcnta}{bordercode}{\pgfusepath{stroke}}
\advance\@tempcnta by 1\relax
\repeat
\makeatother
% notes, fields, tags:
\def \ifempty#1{\def\temp{#1} \ifx\temp\empty }
\newcommand{\xfield}[1]{
#1\par
\vfill
{\tiny\texttt{\parbox[t]{\textwidth}{\localtag\hfill\\\globaltag\hfill\uuid}}}
\newpage}
\newenvironment{field}{}{\newpage}
\newif\ifnote
\newenvironment{note}{\notetrue}{\notefalse}
\newcommand{\localtag}{}
\newcommand{\globaltag}{}
\newcommand{\uuid}{}
\newcommand{\tags}[1]{
\ifnote
\renewcommand{\localtag}{#1}
\else
\renewcommand{\globaltag}{#1}
\fi
}
\newcommand{\xplain}[1]{
\label{#1} % make sure there's no duplicate label
\renewcommand{\uuid}{#1} % update the UUID for display and Anki disambiguation
}
\begin{document}
% Lecture 1
\tags{fourier-analysis}
\begin{note}
\tags{fourier-transform}
\xplain{dft-def}
\xfield{Discrete Fourier transform}
\begin{field}
If $f : \F_p^n \to \C$, then
$$\hat f(t) = \E_{x \in \F_p^n} f(x) \omega^{x \cdot t}$$
where $\omega = e^{\frac{\tau i}p}$.
More generally, if $f : G \to \C$, then $\hat f : \hat G \to \C$ is defined by
$$\hat f(\gamma) = \E_{x \in G} f(x)\gamma(x)$$
\end{field}
\end{note}
\begin{note}
\tags{fourier-transform}
\xplain{dft-inversion}
\xfield{Inversion formula for the discrete Fourier transform}
\begin{field}
$$f(x) = \sum_{t \in \F_p^n} \hat f(t) \omega^{- x \cdot t}$$
\begin{proof}
\begin{align*}
\sum_{t \in \F_p^n} \hat f(t) \omega^{-x \cdot t}
& = \sum_{t \in \F_p^n} \left(\E_y f(y)\omega^{y \cdot t}\right) \omega^{-x \cdot t} \\
& = \E_y f(y) \sum_t \omega^{(y - x) \cdot t} \\
& = \E_y f(y) 1_{y = x} p^n \\
& = f(x)
\end{align*}
\end{proof}
\end{field}
\end{note}
\begin{note}
\xplain{indicator-mu-balance-def}
\xfield{Ways to turn a set $A \subseteq \F_p^n$ into a function}
\begin{field}
\begin{itemize}
\item $1_A$ the {\it characteristic function} of $A$, ie
$$1_A(x) = \begin{cases}
1 & \text{ if } x \in A \\
0 & \text{ if } x \nin A
\end{cases}$$
Normalised in the $\infty$ norm.
\item $\mu_A$ the {\it characteristic measure} of $A$, ie
$$\mu_A = \alpha^{-1} 1_A$$
where $\alpha = \frac{\abs A}{\abs G}$. Normalised in the $L^1$ norm.
\item $f_A$ the {\it balanced function} of $A$, ie
$$f_A(x) = 1_A(x) - \alpha$$
Normalised to have sum $0$.
\end{itemize}
\end{field}
\end{note}
\begin{note}
\tags{fourier-transform}
\xplain{dft-neg}
\xfield{Fourier transform of $-A$}
\begin{field}
$$\widehat{1_{-A}} = \overline{1_A}$$
\begin{proof}
\begin{align*}
\widehat{1_{-A}}(t)
& = \E_x 1_{-A}(x) \omega^{x \cdot t} \\
& = \E_x 1_A(-x) \omega^{x \cdot t} \\
& = \E_x 1_A(x) \omega^{-x \cdot t} \\
& = \overline{\widehat{1_A}(t)}
\end{align*}
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{fourier-transform}
\xplain{dft-subspace}
\xfield{Fourier transform of a subspace}
\begin{field}
If $V \le \F_p^n$, then
$$\widehat{\mu_V}(t) = 1_{V^\perp}(t)$$
\begin{proof}
$$\widehat{1_V}(t) = \E_x 1_V(x) \omega^{x \cdot t} = \frac{\abs V}{\abs G} 1_{V^\perp}(t)$$
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{fourier-transform}
\xplain{dft-random-set}
\xfield{Fourier transform of a random set}
\begin{field}
Let $R \subseteq \F_p^n$ be such that each $x$ is included with probability $\frac 12$ independently. Then with high probability
$$\sup_{t \ne 0} \abs{\widehat{1_R}(t)} = O\left(\sqrt{\frac{\log(p^n)}{p^n}}\right)$$
\begin{proof}
Chernoff
\end{proof}
\end{field}
\end{note}
\begin{note}
\xplain{discrete-lp-norm-def}
\xfield{Inner product, $L^p$ norm}
\begin{field}
If $f, g : \F_p^n \to \C$, then
\begin{align*}
\inn f g & = \E_x f(x) \overline{g(x)} \\
\inn{\hat f}{\hat g} & = \sum_t \hat f(t) \overline{\hat g(t)} \\
\norm f_p^p & = \E_x \abs{f(x)}^p \\
\norm{\hat f}_p^p & = \sum_t \abs{\hat f(t)}^p
\end{align*}
\end{field}
\end{note}
\begin{note}
\tags{fourier-transform}
\xplain{discrete-plancherel-parseval}
\xfield{Plancherel and Parseval's identities}
\begin{field}
\begin{align*}
\inn f g & = \inn{\hat f}{\hat g} & \text{ (Plancherel)} \\
\norm f_2 & = \norm{\hat f}_2 & \text{ (Parseval)}
\end{align*}
\begin{proof}
\begin{align*}
\inn{\hat f}{\hat g}
& = \sum_t \hat f(t) \overline{\hat g(t)} = \sum_{t, x, y} f(x) \overline{g(y)} \omega^{(x - y) \cdot t} \\
& = \sum_{x, y} f(x) \overline{g(y)} 1_{x = y} = \inn f g
\end{align*}
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{large-spectrum}
\xplain{large-spectrum-def}
\xfield{Large spectrum}
\begin{field}
The $\rho$-large spectrum of $f$ is
$$\Spec_\rho(f) = \{t \mid |\hat f(t)| \ge \rho\norm f_1\}$$
\end{field}
\end{note}
\begin{note}
\tags{large-spectrum}
\xplain{large-spectrum-subspace}
\xfield{Large spectrum of a subspace}
\begin{field}
If $V \le \F_p^n$ and $\rho > 0$, then
$$\Spec_\rho(1_V) = V^\perp$$
\end{field}
\end{note}
\begin{note}
\tags{large-spectrum}
\xplain{card-large-spectrum-le}
\xfield{Upper bound on the size of the large spectrum}
\begin{field}
For all $\rho > 0$,
$$\abs{\Spec_\rho(f)} \le \rho^{-2} \frac{\norm f_2^2}{\norm f_1^2}$$
\begin{proof}
$$\norm f_2^2 = \norm{\hat f}_2^2 \ge \sum_{t \in \Spec_\rho(f)} \abs{\hat f(t)}^2 \ge \abs{\Spec_\rho(f)}(\rho \norm f_1)^2$$
\end{proof}
\end{field}
\end{note}
% Lecture 2
\begin{note}
\tags{convolution}
\xplain{convolution-def}
\xfield{Convolution of functions}
\begin{field}
Given $f, g : \F_p^n \to \C$, their convolution $f \ast g : \F_p^n \to \C$ is given by
$$(f \ast g)(x) = \E_y f(y)g(x - y)$$
\end{field}
\end{note}
\begin{note}
\tags{convolution}
\xplain{convolution-indicators}
\xfield{Meaning of $1_A \ast 1_B$}
\begin{field}
\begin{align*}
(1_A \ast 1_B)(x)
& = \E_y 1_A(y)1_B(x - y) \\
& = \frac 1{p^n}\abs{A \inter (x - B)} \\
& = \frac{\#\text{ ways to write } x = a + b, a \in A, b \in B}{p^n}
\end{align*}
In particular, the support of $1_A \ast 1_B$ is the {\bf sum set}
$$A + B = \{a + b \mid a \in A, b \in B\}$$
\end{field}
\end{note}
\begin{note}
\tags{convolution fourier-transform}
\xplain{dft-convolution}
\xfield{Relationship between convolution and Fourier transform}
\begin{field}
Given $f, g : \F_p^n \to \C$,
$$\widehat{f \ast g}(t) = \hat f(t) \hat g(t)$$
\begin{proof}
\begin{align*}
\widehat{f \ast g}(t)
& = \E_x \left(\E_y f(y)g(x - y)\right)\omega^{x \cdot t} \\
& = \E_y f(y) \E_u g(u)\omega^{(u + y) \cdot t} \\
& = \hat f(t) \hat g(t)
\end{align*}
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{fourier-transform}
\xplain{l4-norm-fourier-transform}
\xfield{Meaning of the $L^4$ norm of the Fourier transform}
\begin{field}
$$\norm{\hat f}_4^4 = \E_{x + y = z + w} f(x)f(y)\overline{f(z)f(w)}$$
\begin{proof}
\begin{align*}
\norm{\hat f}_4^4
& = \norm{\hat f^2}_2^2 = \norm{\widehat{f \ast f}}_2^2 = \norm{f \ast f}_2^2 \\
& = \E_a (f \ast f)(a)\overline{(f \ast f)(a)} \\
& = \E_{a, x, y, z, w} f(x)f(y)1_{x + y = a}\overline{f(z)f(w)1_{z + w = a}} \\
& = \E_{x + y = z + w} f(x)f(y)\overline{f(z)f(w)}
\end{align*}
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{finite-field-model}
\xplain{bogolyubov-ff}
\xfield{Bogolyubov's lemma in $\F_p^n$}
\begin{field}
If $A \subseteq \F_p^n$ has density $\alpha > 0$, then there exists a subspace $V$ of codimension at most $2\alpha^{-2}$ such that $V \subseteq (A + A) - (A + A)$.
\begin{proof}
Write $(A + A) - (A + A) = \supp (\underbrace{1_A \ast 1_A \ast 1_{-A} \ast 1_{-A}}_g)$, set $K = \Spec_\rho(1_A)$ for $\rho = \sqrt{\frac\alpha 2} > 0$ and define $V = \langle K\rangle^\perp$. We have $\codim V \le \abs K \le \rho^{-2}\alpha^{-1} = 2\alpha^{-2}$ and
$$g(x) = \alpha^4 + \underbrace{\sum_{t \in K \setminus \{0\}} \abs{\widehat{1_A}(t)}^4 \omega^{-x \cdot t}}_{(1)} + \underbrace{\sum_{t \nin K} \abs{\widehat{1_A}(t)}^4 \omega^{-x \cdot t}}_{(2)}$$
Now prove $(1) \ge 0$ and $\abs{(2)} \le \rho^2\alpha^3 = \frac{\alpha^4}2$ so that $g(x) > 0$ whenever $x \in V$.
\end{proof}
\end{field}
\end{note}
\begin{note}
\xplain{sumset-no-subspace, finite-field-model}
\xfield{Example of a set $A \subseteq \F_2^n$ of fixed density such that $A + A$ does not contain any subspace of bounded codimension}
\begin{field}
The set $A = \{x \in \F_2^n \mid \abs x \ge \frac n2 + \frac{\sqrt n}2\}$ has density at least $\frac 14$ but there is no coset $C$ of any subspace of codimension $\sqrt n$ such that $C \subseteq A + A$.
\end{field}
\end{note}
\begin{note}
\tags{large-spectrum finite-field-model}
\xplain{density-increment-ff}
\xfield{Density increment in $\F_p^n$}
\begin{field}
Let $A \subseteq \F_p^n$ of density $\alpha$. If $t \ne 0$ is in $\Spec_\rho(1_A)$, then there exists $x$ such that
$$\abs{A \inter (x + V)} \ge \alpha\left(1 + \frac\rho 2\right)\abs V$$
where $V = \langle t\rangle^\perp$.
\begin{proof}
For $j = 1, \dots, p$, write $v_j + V$ the cosets of $V$, $a_j = \frac{\abs{A \inter (v_j + V)}}{\abs V} - \alpha$ the density increment within each $V_j$. Calculate $\sum_j a_j = 0$ and $\widehat{1_A}(t) = \E_j a_j \omega^j$, so that
$$\rho\alpha \le \abs{\widehat{1_A}(t)} \le \E_j \abs{a_j} = \E_j (\abs{a_j} + a_j)$$
and find $j$ such that $\abs{a_j} + a_j \ge \rho\alpha$. Take $x = v_j$.
\end{proof}
\end{field}
\end{note}
% Lecture 3
\begin{note}
\tags{convolution}
\xplain{t3-def}
\xfield{Definition of $T_3$}
\begin{field}
If $f, g, h : \F_p^n \to \C$, then
$$T_3(f, g, h) = \E_x f(x) g(x + d) h(x + 2d) = \inn{f \ast h}{\bar g (2^{-1} \cdot)}$$
\end{field}
\end{note}
\begin{note}
\tags{3AP finite-field-model}
\xplain{3AP-uniform}
\xfield{Number of 3APs in a uniform set $A \subseteq \F_p^n$}
\begin{field}
If $\sup_{t \ne 0} \abs{\widehat{1_A}(t)} = o(1)$, then $A$ contains $(\alpha^3 + o(1))\abs G^2$ 3APs.
\begin{proof}
The number of 3APs in $A$ is $\abs G^2$ times
\begin{align*}
T_3(1_A, 1_A, 1_A)
& = \inn{1_A \ast 1_A}{1_{2 \cdot A}} = \inn{\widehat{1_A}^2}{\widehat{1_{2 \cdot A}}} \\
& = \alpha^3 + \sum_{t \ne 0} \widehat{1_A}(t)^2 \overline{\widehat{1_{2 \cdot A}}(t)} \text{ by Plancherel}
\end{align*}
In absolute value, the error term is at most
$$\sup_{t \ne 0} \abs{\widehat{1_{2 \cdot A}}(t)} \sum_t \abs{\widehat{1_A}(t)}^2 = \alpha \sup_{t \ne 0} \abs{\widehat{1_A}(t)}$$
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{3AP}
\xplain{meshulam, finite-field-model}
\xfield{Meshulam's theorem}
\begin{field}
IF $p \ge 3$ and $A \subseteq \F_p^n$ only contains trivial 3APs, then the density of $A$ is $O(n^{-1})$.
\begin{proof}
By assumption, $T_3(1_A, 1_A, 1_A) = \frac\alpha{p^n}$. But
$$\abs{T_3(1_A, 1_A, 1_A) - \alpha^3} \le \alpha \sup_{t \ne 0} \abs{\widehat{1_A}(t)}$$
Hence, provided that $2\alpha^{-2} \le p^n$, we find a subspace $V \le \F_p^n$ of codimension $1$ and $x \in \F_p^n$ such that
$$\abs{A \inter (x + V)} \ge \alpha\left(1 + \frac{\alpha^2}4\right)\abs V$$
Iteratively increase $\alpha$ like this until $2\alpha^{-2} \le p^n$. Since $\alpha \le 1$, this takes at most $9\alpha^{-1}$ steps. So $p^{n - 9\alpha^{-1}}\le 2\alpha^{-2}$ which implies $\alpha \le \frac{18}n$, as wanted.
\end{proof}
\end{field}
\end{note}
% Lecture 4
\begin{note}
\tags{character}
\xplain{character-def}
\xfield{Characters, dual group}
\begin{field}
Characters of the group $G$ are group homomorphisms $\gamma : G \to \C^\times$. They form a group called the Pontryagin dual or dual group of $G$.
\end{field}
\end{note}
\begin{note}
\tags{character}
\xplain{dual-ff}
\xfield{Duals of $\F_p^n, \Z/n\Z$}
\begin{field}
\begin{itemize}
\item If $G = \F_p^n$, then $\hat G = \{\gamma_t : x \mapsto \omega^{x \cdot t} \mid t \in G\}$
\item If $G = \Z/n\Z$, then $\hat G = \{\gamma_t : x \mapsto \omega^{xt} \mid t \in G\}$
\end{itemize}
\end{field}
\end{note}
\begin{note}
\tags{fourier-transform integer-model}
\xplain{dft-interval}
\xfield{Fourier transform of an interval in $\Z/p\Z$}
\begin{field}
Write $J = [-\frac L2, \frac L2] \subseteq \Z/p\Z$ with $L < p$ even. For all $t$,
$$\widehat{1_J}(t) \le \min\left(\frac{L + 1}p, \frac 1{2\abs t}\right)$$
\begin{proof}
If $t = 0$, then $\widehat{1_J}(t) = \frac{\abs J}p = \frac{L + 1}p$. If $t \ne 0$, then
$$\widehat{1_J}(t) = \E_x 1_J(x)\omega^{xt} = \E_{x = -\frac L2}^{\frac L2} \omega^{xt} = \frac{\omega^{(L + 1)\frac t2} - \omega^{-(L + 1)\frac t2}}{p(\omega^{\frac t2} - \omega^{-\frac t2})}$$
Noting that for all $x \in [-\pi, \pi]$ we have $\abs{e^{ix} - 1} \ge \frac{2\abs x}\pi$,
$$\abs{\widehat{1_J}(t)} \le \frac 2p \abs{\omega^t - 1}^{-1} \le \frac 2p\left(\frac 2\pi\frac{2\pi t}p\right)^{-1} = \frac 1{2\abs t}$$
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{3AP integer-model}
\xplain{large-fourier-coeff-int}
\xfield{Density increment or large Fourier coefficient for 3APs in an interval}
\begin{field}
Let $A \subseteq [N]$ be of density $\alpha > 0$ with $N > 50\alpha^{-2}$ and containing only trivial 3APs. Let $p$ be a prime in $[\frac N3, \frac{2N}3]$ and write $A' = A \inter [p] \subseteq \Z/p\Z$. Then either
\begin{enumerate}
\item $\sup_{t \ne 0} \abs{\widehat{1_A}(t)} \ge \frac{\alpha^2}{10}$
\item or there exists an interval $J$ of length $\ge \frac N3$ such that
$$\abs{A \inter J} \ge \alpha\left(1 + \frac\alpha{400}\right)\abs J$$
\end{enumerate}
\begin{proof}
There's no non-trivial 3AP with terms in $A', A'', A''$ where $A''$ is the middle third of $A'$. If $A'$ and $A''$ are both dense enough, then we're in Case 1 by computing $T_3(1_{A'}, 1_{A''}, 1_{A''})$. Else we're in Case 2 by looking at the appropriate complement.
\end{proof}
\end{field}
\end{note}
% Lecture 5
\begin{note}
\tags{integer-model}
\xplain{partition-progressions-small-diam}
\xfield{For $t \ne 0, \eps > 0$ and $\phi : [m] \to \Z/p\Z$ multiplication by $t$, how to partition $[m]$ into progressions of length roughly $\eps\sqrt m$ such that $\diam(\phi(P_i)) \le \eps p$?}
\begin{field}
Let $u = \floor{\sqrt m}$ and consider $0, t, \dots, ut$. By pigeonhole, find $0 \le v < w \le u$ such that $\abs{wt - vt} \le \frac pu$. Set $s = w - v \le u$ so that $\abs{st} \le \frac pu$. Divide $[m]$ into residue classes mod $s$. Each has size at least $\floor{\frac ms} \ge \floor{\frac mu}$ and can be divided into progressions of the form $a, a + s, \dots, a + ds$ with $\frac{\eps u}2 < d \le \eps u$. The diameter of each progression under $\phi$ is $\abs{dst} \le \eps p$.
\end{field}
\end{note}
\begin{note}
\tags{3AP integer-model}
\xplain{density-increment-int}
\xfield{Density increment from a large Fourier coefficient for 3APs in an interval}
\begin{field}
Let $A \subseteq [N]$ be of density $\alpha > 0$. Let $p$ be a prime in $[\frac N3, \frac{2N}3]$ and write $A' = A \inter [p]$. Suppose there exists $t \ne 0$ such that $\abs{\widehat{1_A}(t)} \ge \frac{\alpha^2}{10}$. Then there exists a progression $p$ of length at least $\alpha^2 \frac{\sqrt N}{500}$ such that
$$\abs{A \inter P} \ge \alpha\left(1 + \frac\alpha{50}\right)\abs P$$
\begin{proof}
Let $\eps = \frac{\alpha^2}{40\pi}$ and partition $[p]$ into progressions $P_i$ of length at least $\frac{\eps \sqrt p}2 \ge \frac{\alpha^2\sqrt N}{500}$ and $\diam \phi(P_i) \le \eps p$. Fix one $x_i$ inside each $P_i$. Write $\abs{\widehat{f_{A'}}(t)} = \frac 1p\abs{\sum_i\sum_{x \in P_i} f_{A'}(x)\omega^{xt}}$ and use the fact that $\omega^{xt} \approx \omega^{x_it}$ whenever $x \in P_i$ to find some $i$ such that $\sum_{x \in P_i} f_{A'}(x) \ge \frac{\alpha^2\abs{P_i}}{40}$.
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{3AP integer-model}
\xplain{roth}
\xfield{Roth's theorem}
\begin{field}
Let $A \subseteq [N]$ be a set containing only trivial 3APs. Then $\abs A = O(\frac N{\log\log N})$.
\begin{proof}
Iterate the density increment.
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{3AP integer-model}
\xplain{behrend}
\xfield{Behrend's construction}
\begin{field}
There exists a set $A \subseteq [N]$ containing non nontrivial 3APs of size at least $e^{-O(\sqrt{\log N})}$. See Example Sheet 1.
\begin{proof}
$[m]^d$ contains $m^d$ points which all lie on some sphere of radius squared $\le md^2$. Hence one of the spheres contains at least $\frac{m^{d - 2}}d$ integer points. Send those to $\Z$ via the map
\begin{align*}
[m]^d & \to [(2m)^d] \\
x & \mapsto \sum_i (2m - 1)^i x_i
\end{align*}
Density is at least $\frac 1{2^d m^2 d}$, which we optimise by taking $d = \sqrt{\log N}$.
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{bohr-set}
\xplain{bohr-set-def}
\xfield{Bohr set}
\begin{field}
Let $\Gamma \subseteq \hat G$. The Bohr set of frequencies $\Gamma$ and width $\rho$ is
$$B(\Gamma, \rho) = \{x \in G \mid \for \gamma \in \Gamma, \abs{\gamma(x) - 1} \le \rho\}$$
$\abs\Gamma$ is the rank of the Bohr set.
\end{field}
\end{note}
\begin{note}
\tags{bohr-set finite-field-model}
\xplain{bohr-set-ff}
\xfield{Bohr set in $\F_p^n$}
\begin{field}
When $G = \F_p^n$, $B(\Gamma, \rho) = \langle\Gamma\rangle^\perp$ for all small enough $\rho$ (depending only on $p$, not $n$).
\end{field}
\end{note}
\begin{note}
\tags{bohr-set}
\xplain{bohr-set-card-ge}
\xfield{Lower bound on the size of a Bohr set}
\begin{field}
If $B$ is a Bohr set of rank $d$ and width $\rho$, then $\abs B \ge \left(\frac\rho{2\pi}\right)^d \abs G$.
\end{field}
\end{note}
% Lecture 6
\begin{note}
\tags{bohr-set}
\xplain{bogolyubov-int}
\xfield{Bogolyubov's lemma in $\Z/p\Z$}
\begin{field}
If $A \subseteq \Z/p\Z$ has density $\alpha > 0$, then there exists $\Gamma \subseteq \widehat{\Z/p\Z}$ of size at most $2\alpha^{-2}$ such that $B(\Gamma, \frac 12) \subseteq (A + A) - (A + A)$.
\begin{proof}
Pick $\Gamma = \Spec_{\sqrt{\frac\alpha 2}}(1_A)$ and lower bound
$$\Re (1_A \ast 1_A \ast 1_{-A} \ast 1_{-A})(x) = \Re \sum_{t \in \widehat{\F_p}} \abs{\widehat{1_A}(t)}^4 \omega^{-xt}$$
by splitting the sum over $\Gamma$ and $\Gamma^c$.
\end{proof}
\end{field}
\end{note}
\begin{note}
\xplain{balanced-function-fourier-analysis-relevance}
\xfield{Why is the balanced function important in Fourier-analytic arguments?}
\begin{field}
Passing from a function to its balanced function kills the $0$-th Fourier coefficient, which otherwise has to be special-cased everywhere.
\end{field}
\end{note}
\tags{combinatorial-methods}
\begin{note}
\tags{doubling-constant}
\xplain{doubling-constant-def}
\xfield{Doubling constant, difference constant}
\begin{field}
For a finite nonempty set $A \subseteq G$, its doubling and difference constants are
$$\sigma(A) = \frac{\abs{A + A}}{\abs A}, \delta(A) = \frac{\abs{A - A}}{\abs A}$$
\end{field}
\end{note}
\begin{note}
\tags{doubling-constant}
\xplain{doubling-constant-one}
\xfield{When is the doubling constant $1$?}
\begin{field}
When the set is a subspace
\end{field}
\end{note}
\begin{note}
\tags{doubling-constant}
\xplain{doubling-constant-lt-three-halves}
\xfield{If $A$ has very small doubling constant then $A$ lies in a small coset.}
\begin{field}
If $A$ is such that $\abs{A + A} < \frac 32 \abs A$, then there exists $V \le \F_p^n$ such that $A$ is contained in a coset of $V$ and $\abs V < \frac 32\abs A$.
\end{field}
\end{note}
\begin{note}
\tags{doubling-constant}
\xplain{big-doubling-random}
\xfield{Example of a set with big doubling}
\begin{field}
Let $A \subseteq \F_p^n$ be a set where each point is taken randomly with probability $p^{-\theta n}$ where $\theta \in ]\frac 12, 1]$. Then with high probability $\abs{A + A} = (1 + o(1))\frac{\abs A^2}2$.
\end{field}
\end{note}
\begin{note}
\tags{ruzsa-distance}
\xplain{ruzsa-distance-def}
\xfield{Ruzsa distance}
\begin{field}
Given finite sets $A, B \subseteq G$, we define the Ruzsa distance between $A$ and $B$ to be
$$d(A, B) = \log \frac{\abs{A - B}}{\sqrt{\abs A\abs B}}$$
\end{field}
\end{note}
\begin{note}
\tags{ruzsa-distance}
\xplain{ruzsa-triangle-inequality}
\xfield{Ruzsa's triangle inequality}
\begin{field}
For $A, B, C \subseteq G$ finite,
$$d(A, C) \le d(A, B) + d(B, C)$$
\begin{proof}
The inequality reduces to
$$\abs B\abs{A - C} \le \abs{A - B}\abs{B - C}$$
This is true because
\begin{align*}
\phi : B \times (A - C) & \to (A - B) \times (B - C) \\
(b, d) & \mapsto (a_d - b, b - c_d)
\end{align*}
is injective, where for each $d \in A - C$ we have chosen $a_d \in A, c_d \in C$ such that $d = a - c$.
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{doubling-constant}
\xplain{pluennecke-inequality}
\xfield{Plünnecke's inequality}
\begin{field}
Let $A, B \subseteq G$ be finite such that $\abs{A + B} \le K\abs A$. Then for all $\ell, m$,
$$\abs{\ell B - mB} \le K^{\ell + m}\abs B$$
\begin{proof}
WLOG $\abs{A + B} = K\abs A$. Find $A' \subseteq A$ nonempty minimising $K' = \frac{\abs{A' + B}}{\abs{A'}}$.
\begin{claim}
For all finite $C \subseteq G$, $\abs{A' + B + C} \le K'\abs{A' + C}$
\end{claim}
From the claim, prove that $\abs{A' + mB} \le K'^m\abs{A'}$ for all $m$ by induction. Now, by the triangle inequality,
$$\abs{A'}\abs{\ell B - mB} \le \abs{A' + \ell B}\abs{A' + mB} \le K'^\ell \abs{A'} K'^m \abs{A'}$$
Namely, $\abs{\ell B - mB} \le K'^{\ell + m}\abs{A'} \le K^{\ell + m} \abs A$.
\end{proof}
\end{field}
\end{note}
\begin{note}
\xplain{pluennecke-inequality-claim}
\xfield{Key claim within the proof of Plünnecke's inequality}
\begin{field}
WLOG $\abs{A + B} = K\abs A$. $A' \subseteq A$ is nonempty minimising $K' = \frac{\abs{A' + B}}{\abs{A'}}$.
\begin{claim}
For all finite $C \subseteq G$, $\abs{A' + B + C} \le K'\abs{A' + C}$
\end{claim}
\begin{proof}[Proof of claim]
Induct on $C$. obvious if $C = \emptyset$. For $C' = C \union \{x\}, x \notin C$, write
\begin{align*}
A' + B + C' & = A' + B + C \union A' + B + x \setminus D + B + x \\
A' + C' & = A' + C \union A' + x \setminus E + x
\end{align*}
where $D = \{a \in A' \mid a + B + x \subseteq A' + B + C\}, E = \{a \in A' \mid a + x \in A' + C\} \subseteq D$. Note that the second union is disjoint. Use the induction hypothesis and the minimality assumption for $K'$ to deduce the claim.
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{doubling-constant}
\xplain{doubling-difference-constants-relation}
\xfield{Relationship between the doubling and difference constant}
\begin{field}
If $\abs{A - A} \le K\abs A$, then
$$\abs A\abs{A + A} \le \abs{A - A}\abs{A - A} \le K^2\abs A^2$$
by Ruzsa's triangle inequality. So $\sigma(A) \le \delta(A)^2$.
If $\abs{A + A} \le K\abs A$, then
$$\abs{A - A} \le K^{1 + 1}\abs A$$
by Plünnecke's inequality. So $\delta(A) \le \sigma(A)^2$.
\end{field}
\end{note}
\begin{note}
\xplain{freiman-ruzsa}
\xfield{The Freiman-Ruzsa theorem}
\begin{field}
Let $A \subseteq \F_p^n$ be such that $\abs{A + A} \le K\abs A$ for some $K > 0$. Then $A$ is contained in a subspace $H \le \F_p^n$ of size $\abs H \le K^2 p^{K^4} \abs A$.
\begin{proof}
Write $S = A - A$ and choose $X \subseteq A + S$ maximal such that the translates $x + A$ for $x \in X$ are disjoint. Use that $X + A \subseteq 2A + S$ to prove $\abs X \le K^4$ by Plünnecke. Now $A + S \subseteq X + S$ because $y \in A + S$ is either in $X \subseteq X + S$ or $x + A$ and $y + A$ are not disjoint by maximality of $X$, namely $y \in x + A - A \subseteq X + S$. By induction, $\ell A + S \subseteq X + S$ for all $\ell$. Hence, the subgroup generated by $A$ is contained in $\langle X\rangle + S$ and size at most
$$\abs{\langle X\rangle}\abs S \le p^{\abs X}K^2\abs A \le K^2p^{K^4}\abs A$$
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{doubling-constant}
\xplain{subgroup-exponential-size-doubling-constant}
\xfield{Example of a set which generates a subgroup of size exponential in its doubling constant}
\begin{field}
Let $A = H \union R \subseteq \F_p^n$ where $H$ is a subspace of dimension $K \ll d \ll n - k$ and $R$ consists of $K - 1$ linearly independent vectors in $H^\perp$. Then $\abs A = \abs{H \union R} \sim \abs H$ and $\abs{A + A} = \abs{H \union H + R \union R + R} \sim K\abs H \sim K\abs A$ but any subspace $V \le \F_p^n$ containing $A$ must have size $\ge p^{d + (K - 1)} = p^{K - 1} \abs H \sim p^{K - 1}\abs A$ where the constant is exponential in $K$.
\end{field}
\end{note}
\begin{note}
\xplain{polynomial-freiman-ruzsa}
\xfield{Polynomial Freiman-Ruzsa conjecture}
\begin{field}
Let $A \subseteq \F_p^n$ be such that $\abs{A + A} \le K\abs A$. Then there is a subspace $H \le \F_p^n$ of size at most $C_1(K)\abs A$ and $x \in \F_p^n$ such that $\abs{A \inter (x + H)} \ge \frac{\abs A}{C_2(K)}$ where $C_1(K)$ and $C_2(K)$ are polynomials.
\end{field}
\end{note}
\begin{note}
\tags{additive-energy}
\xplain{additive-energy-def}
\xfield{Additive energy}
\begin{field}
Given an abelian group $G$ and finite sets $A, B \subseteq G$, define additive quadruples to be the tuples $(a, a', b, b') \in A^2 \times B^2$ such that $a + b = a' + b'$ and the additive energy between $A$ and $B$ to be
$$E(A, B) = \frac{\#\{\text{additive quadruples}\}}{\abs A^{\frac 32}\abs B^{\frac 32}}$$
\end{field}
\end{note}
\begin{note}
\tags{additive-energy fourier-transform}
\xplain{additive-energy-fourier-transform}
\xfield{Relation between the additive energy and the Fourier transform}
\begin{field}
If $G$ is finite and $A \subseteq G$, then
\begin{align*}
\abs A^3 E(A)
& = \abs G^3 \E_{x + y = z + w} 1_A(x)1_A(y)1_A(z)1_A(w) \\
& = \abs G^3 \norm{\widehat{1_A}}_4^4
\end{align*}
namely
$$\norm{\widehat{1_A}}_4^4 = \alpha^3 E(A)$$
\end{field}
\end{note}
\begin{note}
\tags{additive-energy}
\xplain{additive-energy-subgroup}
\xfield{Additive energy of a subgroup}
\begin{field}
When $H \le G$, we have $E(H) = 1$.
\end{field}
\end{note}
\begin{note}
\tags{doubling-constant additive-energy}
\xplain{small-doubling-constant-implies-big-additive-energy}
\xfield{Small doubling implies big energy}
\begin{field}
Let $G$ be abelian and $A, B \subseteq G$ be finite. Then $E(A, B) \ge \frac{\sqrt{\abs A\abs B}}{\abs{A \pm B}}$. In particular, if $\abs{A \pm A} \le K\abs A$ then $E(A) \ge \frac 1K$.
\begin{proof}
Write $r(x) = \#\{(a, b) \in A \times B \mid a + b = x\}$ so that
$$\abs A^{\frac 32}\abs B^{\frac 32}E(A, B) = \#\{\text{additive quadruples}\} = \sum_x r(x)^2$$
Also note that $\sum_x r(x) = \abs A\abs B$ so that
\begin{align*}
\abs A^{\frac 32}\abs B^{\frac 32} E(A, B)
& = \sum_x r(x)^2 \\
& \ge \frac{\sum_x r(x)1_{A + B}(x)}{\sum_x 1_{A + B}(x)^2} = \frac{(\abs A\abs B)^2}{\abs{A + B}}
\end{align*}
by Cauchy-Schwarz. Do similarly for $A - B$.
\end{proof}
\end{field}
\end{note}
\begin{note}
\tags{doubling-constant additive-energy}
\xplain{big-additive-energy-not-implies-small-doubling-constant}
\xfield{Big energy does not imply small doubling}
\begin{field}
Let $G$ be your favorite family of abelian groups. Then there are constants $\eta, \theta > 0$ such that for all sufficiently large $n$ there exists $A \subseteq G$ with $\abs A = n$ satisfying $E(A) \gg \eta$ and $\abs{A + A} \ge \theta \abs A^2$.
\end{field}
\end{note}
\begin{note}
\tags{additive-energy}
\xplain{balog-szemeredi-gowers}
\xfield{Balog-Szemerédi-Gowers}
\begin{field}
Let $G$ be an abelian group and let $A \subseteq G$ be finite such that $E(A) \ge \eta$ for some $\eta > 0$. Then there exists $A' \subseteq A$ of size at least $c(\eta)$ such that $\abs{A' + A'} \le C(\eta)\abs A$ where $c(\eta)$ and $C(\eta)$ are polynomials in $\eta$.
\end{field}
\end{note}
\begin{note}
\xplain{balog-szemeredi-gowers-dependent-random-choice}
\xfield{Dependent random choice step within the proof of Balog-Szemerédi-Gowers}
\begin{field}
Let $A_1, \dots, A_m \subseteq [n]$ and suppose that $\E_{i, j} \abs{A_i \inter A_j} \ge \delta^2n$. Then there exists $X \subseteq [m]$ of size at least $\frac{\delta^5m}{\sqrt 2}$ such that $\abs{A_i \inter A_j} \ge \frac{\delta^2n}2$ for at least 90\% of the pairs $(i, j) \in X^2$.
\begin{proof}
Let $x_1, \dots, x_5$ be uniform random in $[n]$ and let $X = \{i \in [m] \mid \forall k, x_k \in A_i\}$. Call a pair {\bf bad} if $\abs{A_i \inter A_j} < \frac{\delta^2n}2$. Prove that
$$\frac{\delta^{10}m^2}2 + 16\E[\#\{\text{bad pairs in }X^2\}] \le \E[\abs X^2]$$
so that $\frac{\delta^{10}m^2}2 + 16\#\{\text{bad pairs in }X^2\} \le \abs X^2$ for some $x_1, \dots, x_5$. This gives $\abs X \ge \frac{\delta^5m}{\sqrt 2}$ and $\#\{\text{bad pairs in }X^2\} \le \frac{\abs X^2}{16} \le 10\% \abs X^2$
\end{proof}
\end{field}
\end{note}
\end{document}