diff --git a/combinatorics.pdf b/combinatorics.pdf index b73fba1..f243a5b 100644 Binary files a/combinatorics.pdf and b/combinatorics.pdf differ diff --git a/combinatorics.tex b/combinatorics.tex index 9ca2ff1..9938d9c 100644 --- a/combinatorics.tex +++ b/combinatorics.tex @@ -640,5 +640,47 @@ \subsection{Alon's Combinatorial Nullstellensatz} \newlec +\begin{nthm}[Alon's Combinatorial Nullstellensatz, 1995] + Let $\F$ be a field and $f \in \F[X_1, \dots, x_n]$ have degree $d = \sum_{i = 1}^n d_i$. Let $S_1, \dots, S_n \subseteq \F$ be such that $\abs{S_i} > d_i$. If $X_1^{d_1} + \dots + X_n^{d_n}$ is a monomial in the expansion of $f$, then $f$ is non-zero somewhere on $S_1 \times \dots \times S_n$. +\end{nthm} +\begin{proof}[Proof (MichaƂek)] + Note that + $$X^k = (X - t)(X^{k - 1} + tX^{k - 2} + \dots + t^{k - 1}) + t^k$$ + Induction on $d$. + \begin{itemize} + \item Obvious for $d = 0$. + \item If $d \ge 1$, say $d_1 \ge 1$, pick $s_1 \in S_1$. Then $f = (X_1 - s_1)q(X) + r(X)$ where $\deg q = d - 1$ and $r \in \F[X_2, \dots, X_n]$. Assume that $f$ vanishes on $S_1 \times \dots \times S_n$. Then $s$ vanishes on $\{s_1\} \times S_2 \times \dots \times S_n$. But $r$ does not depend on $X_1$, so in fact $r$ vanishes on $S_1 \times \dots \times S_n$. Therefore $q$ is zero on $S_1 \setminus \{s_1\} \times \dots \times S_n$, which contradicts the induction hypothesis. + \end{itemize} +\end{proof} + +\begin{nthm}[Chevalley-Warning] + Let $\F$ be a finite field and + $$f_1, \dots, f_m \in \F[X_1, \dots, X_n]$$ + be such that $\sum_{i = 1}^m \deg f_i < n$. If the $f_i$ have a common zero, then they have another one. +\end{nthm} +\begin{proof} + Write $q$ the order of $\F$. Recall that for $z \in Z$ + $$z^{q - 1} = \begin{cases*} + 0 \text{ if } z = 0 \\ + 1 \text{ if } z \ne 0 + \end{cases*}$$ + Assume (by shifting) that the common zero of the $f_i$ is $0$. Define + $$f = \prod_{i = 1}^m (1 - f_i^{q - 1}) + \gamma \prod_{i = 1}^n \prod_{s \ne 0} (X_i - s)$$ + where we choose $\gamma \ne 0$ such that $f(0) = 0$. + $$\deg f \le \max((n - 1)(q - 1), n(q - 1)) = n(q - 1)$$ + and the monomial $X_1^{q - 1} \dots X_n^{q - 1}$ has coefficient $\gamma \ne 0$ in $f$. So the Combinatorial Nullstellensatz gives us $a$ such that $f(a) \ne 0$. Then $a \ne 0$ and $f_1(a) = \dots = f_m(a) = 0$. +\end{proof} + +\begin{nthm} + Let $\F$ be a finite field of characteristic $p$. Let $f \in \F[X_1, \dots, X_n]$. If $\deg f < n$, then the number of zeroes of $f$ is a multiple of $p$. +\end{nthm} +\begin{proof} + Denote $q$ the order of $\F$.Write $N(f)$ the number of zeroes of $f$. We have + $$N(f) = \sum_x(1 - f(x)^{q - 1}) = - \sum_x f(x)^{q - 1}$$ + Expand $f(x)^{q - 1}$ into monomials of degree at most $(n - 1)(q - 1)$. +\end{proof} + +\newlec + \printindex \end{document} \ No newline at end of file