forked from gzc/CLRS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
optimalBST.cpp
104 lines (93 loc) · 2.61 KB
/
optimalBST.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#include <iostream>
using namespace std;
const int MaxVal = 9999;
const int n = 5;
//搜索到根节点和虚拟键的概率
double p[n + 1] = {-1,0.15,0.1,0.05,0.1,0.2};
double q[n + 1] = {0.05,0.1,0.05,0.05,0.05,0.1};
int root[n + 1][n + 1];//记录根节点
double w[n + 2][n + 2];//子树概率总和
double e[n + 2][n + 2];//子树期望代价
void optimalBST(double *p,double *q,int n)
{
//初始化只包括虚拟键的子树
for (int i = 1;i <= n + 1;++i)
{
w[i][i - 1] = q[i - 1];
e[i][i - 1] = q[i - 1];
}
//由下到上,由左到右逐步计算
for (int len = 1;len <= n;++len)
{
for (int i = 1;i <= n - len + 1;++i)
{
int j = i + len - 1;
e[i][j] = MaxVal;
w[i][j] = w[i][j - 1] + p[j] + q[j];
//求取最小代价的子树的根
for (int k = i;k <= j;++k)
{
double temp = e[i][k - 1] + e[k + 1][j] + w[i][j];
if (temp < e[i][j])
{
e[i][j] = temp;
root[i][j] = k;
}
}
}
}
}
//输出最优二叉查找树所有子树的根
void printRoot()
{
cout << "各子树的根:" << endl;
for (int i = 1;i <= n;++i)
{
for (int j = 1;j <= n;++j)
{
cout << root[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
//打印最优二叉查找树的结构
//打印出[i,j]子树,它是根r的左子树和右子树
void printOptimalBST(int i,int j,int r)
{
int rootChild = root[i][j];//子树根节点
if (rootChild == root[1][n])
{
//输出整棵树的根
cout << "k" << rootChild << "是根" << endl;
printOptimalBST(i,rootChild - 1,rootChild);
printOptimalBST(rootChild + 1,j,rootChild);
return;
}
if (j < i - 1)
return;
else if (j == i - 1)//遇到虚拟键
{
if (j < r)
cout << "d" << j << "是" << "k" << r << "的左孩子" << endl;
else
cout << "d" << j << "是" << "k" << r << "的右孩子" << endl;
return;
}
else//遇到内部结点
{
if (rootChild < r)
cout << "k" << rootChild << "是" << "k" << r << "的左孩子" << endl;
else
cout << "k" << rootChild << "是" << "k" << r << "的右孩子" << endl;
}
printOptimalBST(i,rootChild - 1,rootChild);
printOptimalBST(rootChild + 1,j,rootChild);
}
int main()
{
optimalBST(p,q,n);
printRoot();
cout << "最优二叉树结构:" << endl;
printOptimalBST(1,n,-1);
}