-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_student.py
431 lines (387 loc) · 13.3 KB
/
train_student.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import argparse
import numpy as np
import torch
import torch.optim as optim
from pathlib import Path
from models import Model
from dataloader import load_data, load_out_t
from utils import (
get_logger,
get_evaluator,
set_seed,
get_training_config,
check_writable,
check_readable,
compute_min_cut_loss,
graph_split,
feature_prop,
)
from train_and_eval import distill_run_transductive, distill_run_inductive
def get_args():
parser = argparse.ArgumentParser(description="PyTorch DGL implementation")
parser.add_argument("--device", type=int, default=7, help="CUDA device, -1 means CPU")
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--log_level",
type=int,
default=20,
help="Logger levels for run {10: DEBUG, 20: INFO, 30: WARNING}",
)
parser.add_argument(
"--console_log",
action="store_true",
help="Set to True to display log info in console",
)
parser.add_argument(
"--output_path", type=str, default="outputs", help="Path to save outputs"
)
parser.add_argument(
"--num_exp", type=int, default=1, help="Repeat how many experiments"
)
parser.add_argument(
"--exp_setting",
type=str,
default="tran",
help="Experiment setting, one of [tran, ind]",
)
parser.add_argument(
"--eval_interval", type=int, default=1, help="Evaluate once per how many epochs"
)
parser.add_argument(
"--save_results",
action="store_true",
help="Set to True to save the loss curves, trained model, and min-cut loss for the transductive setting",
)
"""Dataset"""
parser.add_argument("--dataset", type=str, default="cora", help="Dataset")
parser.add_argument("--data_path", type=str, default="./data", help="Path to data")
parser.add_argument(
"--labelrate_train",
type=int,
default=20,
help="How many labeled data per class as train set",
)
parser.add_argument(
"--labelrate_val",
type=int,
default=30,
help="How many labeled data per class in valid set",
)
parser.add_argument(
"--split_idx",
type=int,
default=0,
help="For Non-Homo datasets only, one of [0,1,2,3,4]",
)
"""Model"""
parser.add_argument(
"--model_config_path",
type=str,
default="./train.conf.yaml",
help="Path to model configuration",
)
parser.add_argument("--teacher", type=str, default="SAGE", help="Teacher model")
parser.add_argument("--student", type=str, default="MLP", help="Student model")
parser.add_argument(
"--num_layers", type=int, default=2, help="Student model number of layers"
)
parser.add_argument(
"--hidden_dim",
type=int,
default=64,
help="Student model hidden layer dimensions",
)
parser.add_argument("--dropout_ratio", type=float, default=0)
parser.add_argument(
"--norm_type", type=str, default="none", help="One of [none, batch, layer]"
)
"""SAGE Specific"""
parser.add_argument("--batch_size", type=int, default=512)
parser.add_argument(
"--fan_out",
type=str,
default="5,5",
help="Number of samples for each layer in SAGE. Length = num_layers",
)
parser.add_argument(
"--num_workers", type=int, default=0, help="Number of workers for sampler"
)
"""Optimization"""
parser.add_argument("--learning_rate", type=float, default=0.01)
parser.add_argument("--weight_decay", type=float, default=0.0005)
parser.add_argument(
"--max_epoch", type=int, default=500, help="Evaluate once per how many epochs"
)
parser.add_argument(
"--patience",
type=int,
default=50,
help="Early stop is the score on validation set does not improve for how many epochs",
)
"""Ablation"""
parser.add_argument(
"--feature_noise",
type=float,
default=0,
help="add white noise to features for analysis, value in [0, 1] for noise level",
)
parser.add_argument(
"--split_rate",
type=float,
default=0.2,
help="Rate for graph split, see comment of graph_split for more details",
)
parser.add_argument(
"--compute_min_cut",
action="store_true",
help="Set to True to compute and store the min-cut loss",
)
parser.add_argument(
"--feature_aug_k",
type=int,
default=0,
help="Augment node futures by aggregating feature_aug_k-hop neighbor features",
)
"""Distill"""
parser.add_argument(
"--lamb_soft_labels",
type=float,
default=0,
help="Parameter balances loss from hard labels and teacher outputs, take values in [0, 1]",
)
parser.add_argument(
"--lamb_soft_tokens",
type=float,
default=1e-8,
help="Parameter balances loss from token distillation, take values in [0, 1]",
)
parser.add_argument(
"--temperature",
type=float,
default=4,
help="Temperature for soft tokens distillation",
)
parser.add_argument(
"--out_t_path", type=str, default="outputs", help="Path to load teacher outputs"
)
args = parser.parse_args()
return args
def run(args):
"""
Returns:
score_lst: a list of evaluation results on test set.
len(score_lst) = 1 for the transductive setting.
len(score_lst) = 2 for the inductive/production setting.
"""
""" Set seed, device, and logger """
set_seed(args.seed)
if torch.cuda.is_available() and args.device >= 0:
device = torch.device("cuda:" + str(args.device))
else:
device = "cpu"
if args.feature_noise != 0:
args.output_path = Path.cwd().joinpath(
args.output_path, "noisy_features", f"noise_{args.feature_noise}"
)
# Teacher is assumed to be trained on the same noisy features as well.
args.out_t_path = args.output_path
if args.feature_aug_k > 0:
args.output_path = Path.cwd().joinpath(
args.output_path, "aug_features", f"aug_hop_{args.feature_aug_k}"
)
# NOTE: Teacher may or may not have augmented features, specify args.out_t_path explicitly.
# args.out_t_path =
args.student = f"GA{args.feature_aug_k}{args.student}"
if args.exp_setting == "tran":
output_dir = Path.cwd().joinpath(
args.output_path,
"transductive",
args.dataset,
f"{args.teacher}_{args.student}",
)
out_t_dir = Path.cwd().joinpath(
args.out_t_path,
"transductive",
args.dataset,
args.teacher,
f"seed_{args.seed}"
)
elif args.exp_setting == "ind":
output_dir = Path.cwd().joinpath(
args.output_path,
"inductive",
f"split_rate_{args.split_rate}",
args.dataset,
f"{args.teacher}_{args.student}",
)
out_t_dir = Path.cwd().joinpath(
args.out_t_path,
"inductive",
f"split_rate_{args.split_rate}",
args.dataset,
args.teacher,
f"seed_{args.seed}"
)
else:
raise ValueError(f"Unknown experiment setting! {args.exp_setting}")
args.output_dir = output_dir
check_writable(output_dir, overwrite=False)
check_readable(out_t_dir)
logger = get_logger(output_dir.joinpath("log"), args.console_log, args.log_level)
""" Load data and model config"""
g, labels, idx_train, idx_val, idx_test = load_data(
args.dataset,
args.data_path,
split_idx=args.split_idx,
seed=args.seed,
labelrate_train=args.labelrate_train,
labelrate_val=args.labelrate_val,
)
logger.info(f"Total {g.number_of_nodes()} nodes.")
logger.info(f"Total {g.number_of_edges()} edges.")
feats = g.ndata["feat"]
args.feat_dim = g.ndata["feat"].shape[1]
args.label_dim = labels.int().max().item() + 1
if 0 < args.feature_noise <= 1:
feats = (
1 - args.feature_noise
) * feats + args.feature_noise * torch.randn_like(feats)
""" Model config """
conf = {}
if args.model_config_path is not None:
conf = get_training_config(
args.model_config_path, args.student, args.dataset
) # Note: student config
conf = dict(args.__dict__, **conf)
# delete output_dir form conf for incognito
conf.pop("output_dir")
conf["device"] = device
logger.info(f"conf: {conf}")
""" Model init """
model = Model(conf)
optimizer = optim.Adam(
model.parameters(), lr=conf["learning_rate"], weight_decay=conf["weight_decay"]
)
criterion_l = torch.nn.NLLLoss()
criterion_t = torch.nn.KLDivLoss(reduction="batchmean", log_target=True)
evaluator = get_evaluator(conf["dataset"])
"""Load teacher model output"""
out_t = load_out_t(out_t_dir, 'tea_soft_labels.npz')
out_codebook_embeddings = load_out_t(out_t_dir, 'codebook_embeddings.npz')
out_tea_soft_token_assignments = load_out_t(out_t_dir, 'tea_soft_token_assignments.npz')
logger.debug(
f"teacher score on train data: {evaluator(out_t[idx_train], labels[idx_train])}"
)
logger.debug(
f"teacher score on val data: {evaluator(out_t[idx_val], labels[idx_val])}"
)
logger.debug(
f"teacher score on test data: {evaluator(out_t[idx_test], labels[idx_test])}"
)
"""Data split and run"""
loss_and_score = []
if args.exp_setting == "tran":
idx_l = idx_train
idx_t = torch.cat([idx_train, idx_val, idx_test])
distill_indices = (idx_l, idx_t, idx_val, idx_test)
# propagate node feature
if args.feature_aug_k > 0:
feats = feature_prop(feats, g, args.feature_aug_k)
out, acc = distill_run_transductive(
conf,
model,
feats,
labels,
out_t,
out_codebook_embeddings,
out_tea_soft_token_assignments,
distill_indices,
criterion_l,
criterion_t,
evaluator,
optimizer,
logger,
loss_and_score,
)
score_lst = [acc]
elif args.exp_setting == "ind":
# Create inductive split
obs_idx_train, obs_idx_val, obs_idx_test, idx_obs, idx_test_ind = graph_split(
idx_train, idx_val, idx_test, args.split_rate, args.seed
)
obs_idx_l = obs_idx_train
obs_idx_t = torch.cat([obs_idx_train, obs_idx_val, obs_idx_test])
distill_indices = (
obs_idx_l,
obs_idx_t,
obs_idx_val,
obs_idx_test,
idx_obs,
idx_test_ind,
)
# propagate node feature. The propagation for the observed graph only happens within the subgraph obs_g
if args.feature_aug_k > 0:
obs_g = g.subgraph(idx_obs)
obs_feats = feature_prop(feats[idx_obs], obs_g, args.feature_aug_k)
feats = feature_prop(feats, g, args.feature_aug_k)
feats[idx_obs] = obs_feats
out, acc_tran, acc_ind = distill_run_inductive(
conf,
model,
feats,
labels,
out_t,
out_codebook_embeddings,
out_tea_soft_token_assignments,
distill_indices,
criterion_l,
criterion_t,
evaluator,
optimizer,
logger,
loss_and_score,
)
score_lst = [acc_tran, acc_ind]
logger.info(
f"num_layers: {conf['num_layers']}. hidden_dim: {conf['hidden_dim']}. dropout_ratio: {conf['dropout_ratio']}"
)
logger.info(f"# params {sum(p.numel() for p in model.parameters())}")
""" Saving student outputs """
out_np = out.detach().cpu().numpy()
np.savez(output_dir.joinpath("out"), out_np)
""" Saving loss curve and model """
if args.save_results:
# Loss curves
loss_and_score = np.array(loss_and_score)
np.savez(output_dir.joinpath("loss_and_score"), loss_and_score)
# Model
torch.save(model.state_dict(), output_dir.joinpath("model.pth"))
""" Saving min-cut loss"""
if args.exp_setting == "tran" and args.compute_min_cut:
min_cut = compute_min_cut_loss(g, out)
with open(output_dir.parent.joinpath("min_cut_loss"), "a+") as f:
f.write(f"{min_cut :.4f}\n")
return score_lst
def repeat_run(args):
scores = []
for seed in range(args.num_exp):
args.seed = seed
scores.append(run(args))
scores_np = np.array(scores)
return scores_np.mean(axis=0), scores_np.std(axis=0)
def main():
args = get_args()
if args.num_exp == 1:
score = run(args)
score_str = "".join([f"{s : .4f}\t" for s in score])
elif args.num_exp > 1:
score_mean, score_std = repeat_run(args)
score_str = "".join(
[f"{s : .4f}\t" for s in score_mean] + [f"{s : .4f}\t" for s in score_std]
)
with open(args.output_dir.parent.joinpath("exp_results"), "a+") as f:
f.write(f"{score_str}\n")
# for collecting aggregated results
print(f"Best accuracy: {score_str}")
if __name__ == "__main__":
main()