-
Notifications
You must be signed in to change notification settings - Fork 3
/
grad_cam_module.py
367 lines (302 loc) · 12.3 KB
/
grad_cam_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# -*- coding: utf-8 -*-
"""
Created on 2019/8/4 上午9:37
@author: mick.yi
"""
import numpy as np
import cv2
import torch
import torch.nn.functional as F
class GradCAM(object):
"""
1: 网络不更新梯度,输入需要梯度更新
2: 使用目标类别的得分做反向传播
"""
def __init__(self, net, layer_name):
self.net = net
self.layer_name = layer_name
self.feature = None
self.gradient = None
self.net.eval()
self.handlers = []
self._register_hook()
self.sigma = 0.25
self.omega = 100
def _get_features_hook(self, module, input, output):
self.feature = output
#print("feature shape:{}".format(output.size()))
def _get_grads_hook(self, module, input_grad, output_grad):
"""
:param input_grad: tuple, input_grad[0]: None
input_grad[1]: weight
input_grad[2]: bias
:param output_grad:tuple,长度为1
:return:
"""
self.gradient = output_grad[0]
def _register_hook(self):
for (name, module) in self.net.named_modules():
if name == self.layer_name:
self.handlers.append(module.register_forward_hook(self._get_features_hook))
self.handlers.append(module.register_backward_hook(self._get_grads_hook))
def remove_handlers(self):
for handle in self.handlers:
handle.remove()
def __call__(self, inputs, index):
"""
:param inputs: [1,3,H,W]
:param index: class id
:return:
"""
self.net.zero_grad()
conv_out_conv2,conv_out_3a,conv_out_3b,conv_out_3c,conv_out_4a,conv_out_4b,\
conv_out_4c,conv_out_4d,conv_out_4e,conv_out_5a,conv_out_5b,video_semantic,output = self.net(inputs) # [1,num_classes]
if index is None:
index = np.argmax(output.cpu().data.numpy())
target = output[0][index]
target.backward()
gradient = self.gradient[0].cpu().data.numpy() # [C,H,W]
weight = np.mean(gradient, axis=(1, 2)) # [C]
feature = self.feature[0].cpu().data.numpy() # [C,H,W]
cam = feature * weight[:, np.newaxis, np.newaxis] # [C,H,W]
cam = np.sum(cam, axis=0) # [H,W]
cam = np.maximum(cam, 0) # ReLU
# 数值归一化
cam -= np.min(cam)
if np.max(cam)!=0:
cam /= np.max(cam)
# resize to 224*224
cam = cv2.resize(cam, (224, 224))
#Generate the soft-mask
#cam_min = np.min(cam)
#cam_max = np.max(cam)
#scaled_cam = (cam - cam_min) / (cam_max - cam_min)
#mask = 1/(1+np.exp(-self.omega * (cam- self.sigma)))
#masked_image = inputs.cpu().data - inputs.cpu().data * mask
return cam #, masked_image
class GradCamPlusPlus(GradCAM):
def __init__(self, net, layer_name):
super(GradCamPlusPlus, self).__init__(net, layer_name)
def __call__(self, inputs, index):
"""
:param inputs: [1,3,H,W]
:param index: class id
:return:
"""
self.net.zero_grad()
output = self.net(inputs) # [1,num_classes]
if index is None:
index = np.argmax(output.cpu().data.numpy())
target = output[1][0][index]
target.backward()
gradient = self.gradient[0].cpu().data.numpy() # [C,H,W]
gradient = np.maximum(gradient, 0.) # ReLU
indicate = np.where(gradient > 0, 1., 0.) # 示性函数
norm_factor = np.sum(gradient, axis=(1, 2)) # [C]归一化
for i in range(len(norm_factor)):
norm_factor[i] = 1. / norm_factor[i] if norm_factor[i] > 0. else 0. # 避免除零
alpha = indicate * norm_factor[:, np.newaxis, np.newaxis] # [C,H,W]
weight = np.sum(gradient * alpha, axis=(1, 2)) # [C] alpha*ReLU(gradient)
feature = self.feature[0].cpu().data.numpy() # [C,H,W]
cam = feature * weight[:, np.newaxis, np.newaxis] # [C,H,W]
cam = np.sum(cam, axis=0) # [H,W]
# cam = np.maximum(cam, 0) # ReLU
# 数值归一化
cam -= np.min(cam)
if np.max(cam)!=0:
cam /= np.max(cam)
# resize to 224*224
cam = cv2.resize(cam, (224, 224))
return cam
class GradCAM_two_one(object):
"""
1: 网络不更新梯度,输入需要梯度更新
2: 使用目标类别的得分做反向传播
"""
def __init__(self, net, layer_name1,layer_name2):
self.net = net
self.layer_name1 = layer_name1
self.layer_name2 = layer_name2
self.feature = None
self.gradient = None
self.net.eval()
self.handlers = []
self._register_hook()
self.sigma = 0.25
self.omega = 100
def _get_features_hook1(self, module, input, output):
self.feature1 = output
#print("feature shape:{}".format(output.size()))
def _get_features_hook2(self, module, input, output):
self.feature2 = output
#print("feature shape:{}".format(output.size()))
def _get_grads_hook1(self, module, input_grad, output_grad):
"""
:param input_grad: tuple, input_grad[0]: None
input_grad[1]: weight
input_grad[2]: bias
:param output_grad:tuple,长度为1
:return:
"""
self.gradient1 = output_grad[0]
def _get_grads_hook2(self, module, input_grad, output_grad):
"""
:param input_grad: tuple, input_grad[0]: None
input_grad[1]: weight
input_grad[2]: bias
:param output_grad:tuple,长度为1
:return:
"""
self.gradient2 = output_grad[0]
def _register_hook(self):
for (name, module) in self.net.named_modules():
if name == self.layer_name1:
self.handlers.append(module.register_forward_hook(self._get_features_hook1))
self.handlers.append(module.register_backward_hook(self._get_grads_hook1))
if name == self.layer_name2:
self.handlers.append(module.register_forward_hook(self._get_features_hook2))
self.handlers.append(module.register_backward_hook(self._get_grads_hook2))
def remove_handlers(self):
for handle in self.handlers:
handle.remove()
def __call__(self, inputs_one, inputs_two, index_one,index_two):
"""
:param inputs: [1,3,H,W]
:param index: class id
:return:
"""
self.net.zero_grad()
output1, output2= self.net(inputs_one,inputs_two) # [1,num_classes]
if index_one is None:
index_one = np.argmax(output1.cpu().data.numpy())
#if index_two is None:
# index_two = np.argmax(output2.cpu().data.numpy())
target1 = output1[0][index_one]
#target2 = output2[0][index_two]
target1.backward()
#target2.backward()
gradient1 = self.gradient1[0].cpu().data.numpy() # [C,H,W]
#gradient2 = self.gradient2[0].cpu().data.numpy() # [C,H,W]
weight1 = np.mean(gradient1, axis=(1, 2)) # [C]
#weight2 = np.mean(gradient2, axis=(1, 2)) # [C]
feature1 = self.feature1[0].cpu().data.numpy() # [C,H,W]
#feature2 = self.feature2[0].cpu().data.numpy() # [C,H,W]
cam1 = feature1 * weight1[:, np.newaxis, np.newaxis] # [C,H,W]
#cam2 = feature2 * weight2[:, np.newaxis, np.newaxis] # [C,H,W]
cam1 = np.sum(cam1, axis=0) # [H,W]
cam1 = np.maximum(cam1, 0) # ReLU
#cam2 = np.sum(cam2, axis=0) # [H,W]
#cam2 = np.maximum(cam2, 0) # ReLU
# 数值归一化
cam1 -= np.min(cam1)
#cam2 -= np.min(cam2)
if np.max(cam1)!=0:
cam1 /= np.max(cam1)
#if np.max(cam2)!=0:
# cam2 /= np.max(cam2)
# resize to 224*224
cam1 = cv2.resize(cam1, (7, 7))
#cam2 = cv2.resize(cam2, (224, 224))
#Generate the soft-mask
#cam_min = np.min(cam)
#cam_max = np.max(cam)
#scaled_cam = (cam - cam_min) / (cam_max - cam_min)
#mask = 1/(1+np.exp(-self.omega * (cam- self.sigma)))
#masked_image = inputs.cpu().data - inputs.cpu().data * mask
return cam1 #, masked_image
class GradCAM_two_two(object):
"""
1: 网络不更新梯度,输入需要梯度更新
2: 使用目标类别的得分做反向传播
"""
def __init__(self, net, layer_name1,layer_name2):
self.net = net
self.layer_name1 = layer_name1
self.layer_name2 = layer_name2
self.feature = None
self.gradient = None
self.net.eval()
self.handlers = []
self._register_hook()
self.sigma = 0.25
self.omega = 100
def _get_features_hook1(self, module, input, output):
self.feature1 = output
#print("feature shape:{}".format(output.size()))
def _get_features_hook2(self, module, input, output):
self.feature2 = output
#print("feature shape:{}".format(output.size()))
def _get_grads_hook1(self, module, input_grad, output_grad):
"""
:param input_grad: tuple, input_grad[0]: None
input_grad[1]: weight
input_grad[2]: bias
:param output_grad:tuple,长度为1
:return:
"""
self.gradient1 = output_grad[0]
def _get_grads_hook2(self, module, input_grad, output_grad):
"""
:param input_grad: tuple, input_grad[0]: None
input_grad[1]: weight
input_grad[2]: bias
:param output_grad:tuple,长度为1
:return:
"""
self.gradient2 = output_grad[0]
def _register_hook(self):
for (name, module) in self.net.named_modules():
if name == self.layer_name1:
self.handlers.append(module.register_forward_hook(self._get_features_hook1))
self.handlers.append(module.register_backward_hook(self._get_grads_hook1))
if name == self.layer_name2:
self.handlers.append(module.register_forward_hook(self._get_features_hook2))
self.handlers.append(module.register_backward_hook(self._get_grads_hook2))
def remove_handlers(self):
for handle in self.handlers:
handle.remove()
def __call__(self, inputs_one, inputs_two, index_one,index_two):
"""
:param inputs: [1,3,H,W]
:param index: class id
:return:
"""
self.net.zero_grad()
output1, output2= self.net(inputs_one,inputs_two) # [1,num_classes]
#if index_one is None:
# index_one = np.argmax(output1.cpu().data.numpy())
if index_two is None:
index_two = np.argmax(output2.cpu().data.numpy())
#target1 = output1[0][index_one]
target2 = output2[0][index_two]
#target1.backward()
target2.backward()
#gradient1 = self.gradient1[0].cpu().data.numpy() # [C,H,W]
gradient2 = self.gradient2[0].cpu().data.numpy() # [C,H,W]
#weight1 = np.mean(gradient1, axis=(1, 2)) # [C]
weight2 = np.mean(gradient2, axis=(1, 2)) # [C]
#feature1 = self.feature1[0].cpu().data.numpy() # [C,H,W]
feature2 = self.feature2[0].cpu().data.numpy() # [C,H,W]
#cam1 = feature1 * weight1[:, np.newaxis, np.newaxis] # [C,H,W]
cam2 = feature2 * weight2[:, np.newaxis, np.newaxis] # [C,H,W]
#cam1 = np.sum(cam1, axis=0) # [H,W]
#cam1 = np.maximum(cam1, 0) # ReLU
cam2 = np.sum(cam2, axis=0) # [H,W]
cam2 = np.maximum(cam2, 0) # ReLU
# 数值归一化
#cam1 -= np.min(cam1)
cam2 -= np.min(cam2)
#if np.max(cam1)!=0:
# cam1 /= np.max(cam1)
if np.max(cam2)!=0:
cam2 /= np.max(cam2)
# resize to 224*224
#cam1 = cv2.resize(cam1, (224, 224))
cam2 = cv2.resize(cam2, (7, 7))
#Generate the soft-mask
#cam_min = np.min(cam)
#cam_max = np.max(cam)
#scaled_cam = (cam - cam_min) / (cam_max - cam_min)
#mask = 1/(1+np.exp(-self.omega * (cam- self.sigma)))
#masked_image = inputs.cpu().data - inputs.cpu().data * mask
return cam2 #, masked_image