-
Notifications
You must be signed in to change notification settings - Fork 0
/
YangMa-hw01.tex
213 lines (187 loc) · 9.48 KB
/
YangMa-hw01.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
\documentclass[11pt]{article}
\usepackage{amsmath,graphicx,color,epsfig,physics}
%\usepackage{pstricks}
\usepackage{float}
\usepackage{subfigure}
\usepackage{slashed}
\usepackage{color}
\usepackage{multirow}
\usepackage{feynmp}
\usepackage[top=1in, bottom=1in, left=1.2in, right=1.2in]{geometry}
\begin{document}
\title{Particle physics HW1}
\author{Yang Ma}
\maketitle
\section{ }
Have ordered.
\section{ }
I checked PDG and collected the data into Tab.\ref{tb:bosons}, Tab.\ref{tb:quarks}, Tab.\ref{tb:lep}, Tab.\ref{tb:bm}.
\begin{table}[htb]
\centering
\caption{Gauge bosons and Higgs boson in Standard Model.}
\label{tb:bosons}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
& photon ($\gamma$) & gluon (g) & $W^{\pm}$ & Z & Higgs (H) \\ \hline
m (GeV) &$<1\times 10^{-27}$ & 0 & $80.385 \pm 0.015$ & $91.1876 \pm 0.0021$ & $125.09 \pm 0.24$ \\ \hline
$\Gamma$ (GeV) & stable & - & $2.085 \pm 0.042$ & $2.4952 \pm 0.0023$ & $< 0.013$ \\ \hline
$Q$ & $< 1\times 10^{-35} e$ & 0 & $\pm e$ & 0 & 0 \\ \hline
Spin & 1 & 1 & 1 & 1 & 0 \\ \hline
\end{tabular}
\end{table}
\begin{table}[htb]
\centering
\caption{Quarks in Standard Model.}
\label{tb:quarks}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
& u & d & c & s & t & b \\ \hline
m (GeV) & $2.2^{+0.6}_{-0.4}\times 10^{-3}$ & $4.7^{+0.5}_{-0.4}\times 10^{-3}$ & $1.28 \pm 0.03$ & $9.6^{+0.8}_{-0.4}\times 10^{-2}$ & $173.1 \pm 0.6 $ & $4.18^{+0.04}_{-0.03}$ \\ \hline
$\Gamma$ (GeV) & - & - & - & - & $1.41^{+0.19}_{-0.15}$ & - \\ \hline
$Q$ & $\frac{2}{3}e$ & $-\frac{1}{3}e$ & $\frac{2}{3}e$ & $-\frac{1}{3}e$ & $\frac{2}{3}e$ & $-\frac{1}{3}e$ \\ \hline
Spin & $\frac{1}{2}$ & $\frac{1}{2}$ & $\frac{1}{2}$ & $\frac{1}{2}$ & $\frac{1}{2}$ & $\frac{1}{2}$ \\ \hline
\end{tabular}
\end{table}
\begin{table}[htb]
\centering
\caption{Leptons in Standard Model.}
\label{tb:lep}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
& e & $\mu$ & $\tau$ & $\nu_e$ & $\nu_\mu$ & $\nu_\tau$ \\ \hline
m (MeV) & $0.5109989461$ & $105.6583745$ & $1776.86 \pm 0.12$ & $<2\times 10^{-6}$ & $<2\times10^{-6}$ & $<2\times 10^{-6}$ \\ \hline
$\tau$ & $>6.6 \times 10^{28} yr$ & $2.1969811 \times 10^{-6} s$ & $2.903 \times 10^{-13} s$ & - & - & - \\ \hline
$Q$ & -$e$ & -$e$ & -$e$ & 0 & 0 & 0 \\ \hline
Spin & $\frac{1}{2}$ & $\frac{1}{2}$ & $\frac{1}{2}$ & $\frac{1}{2}$ & $\frac{1}{2}$ & $\frac{1}{2}$ \\ \hline
\end{tabular}
\end{table}
\begin{table}[htb]
\centering
\caption{Several baryons and mesons in Standard Model. }
\label{tb:bm}
\begin{tabular}{|c|c|c|c|c|}
\hline
& p & n & $\pi^+$ & $\pi^0$ \\ \hline
m (MeV) & 938.272081 & 939.565413 & 139.57061 & 134.9770 \\ \hline
$\tau$ &$2.1 \times 10^{29} yr$ & $880.2 \pm1.0 s$ & $2.6033 \times 10 ^{-8} s$ & $8.52 \times 10^{-17} s$ \\ \hline
$Q$ & $+e$ & 0 & $+e$ & 0 \\ \hline
Spin & $\frac{1}{2}$ & $\frac{1}{2}$ & 0 & 0 \\ \hline
\end{tabular}
\end{table}
\section { }
\begin{itemize}
\item If the time evolution of state $\ket{\psi(t)}$ is
\begin{eqnarray}
\ket{\psi(t)}=e^{-iEt}\ket{\psi(0)},
\end{eqnarray}
then we can verify that
\begin{eqnarray}
i \frac{d}{dt} \ket{\psi(t)}=i(-i E) e^{-iEt}\ket{\psi(0)} = E e^{-iEt}\ket{\psi(0)} = E \ket{\psi(t)}.
\end{eqnarray}
Above equation is the Schrodinger equation.
\item With the definitions in the homework question, we can directly write out
\begin{eqnarray}
\tau&=&\frac{\int_0^\infty t e^{-t\Gamma} dt}{\int_0^\infty e^{-t\Gamma} dt}= \frac{\frac{1}{\Gamma^2}\int_0^\infty \Gamma t e^{-t\Gamma} d\Gamma t} {\frac{1}{\Gamma}\int_0^\infty \Gamma t e^{-t\Gamma} d\Gamma t} \nonumber \\
&=&\frac{-\frac{1}{\Gamma}\left [(\Gamma t e^{-\Gamma t})|_0^\infty-e^{-\Gamma t}|_0^\infty \right]}{e^{-\Gamma t}|_0^\infty}=\frac{1}{\Gamma}.
\end{eqnarray}
\end{itemize}
\section { }
In PDG I found
\begin{eqnarray}
\hbar= 6.582 \times 10^{-22} {\rm MeV~s},
\end{eqnarray}
so we can then have
\begin{eqnarray}
1 {\rm GeV}^{-1}= 6.582 \times 10^{-22} {\rm s},
\end{eqnarray}
by setting $\hbar=1$.
Using above relations, we can obtain the lifetimes in Tab.\ref{tb:tau} from Tab.\ref{tb:bosons} and Tab.\ref{tb:quarks}. Also we can use $\tau=\hbar/\Gamma$ to obtain the decay widths from Tab.\ref{tb:lep} and Tab.\ref{tb:bm}. Numerical results are presented in Tab.\ref{tb:Gamma} and Tab.\ref{tb:Gamma2}. With $c=3 \times 10^{-10} cm/s = 1$ in natural unit, we then have the mean dacay length of $\mu$, $\tau$, $n$, $\pi^+$ and $\pi^0$ in Tab.\ref{tb:cm}.
\begin{table}[]
\centering
\caption{Lifetimes of $W^{\pm}$, Z, H, t.}
\label{tb:tau}
\begin{tabular}{|c|c|c|c|c|}
\hline
& $W^{\pm}$ & Z & H & t \\ \hline
$\tau$(s) & $3.16 \times 10^{-25}$ & $2.64\times 10^{-25}$ & $>5.06 \times 10^{-23}$ & $4.67 \times10^{-25}$ \\ \hline
\end{tabular}
\end{table}
\begin{table}[]
\centering
\caption{Decay widths of $e^-$, $\mu$ and $\tau$. $p$, $n$, $\pi^+$ and $\pi^0$.}
\label{tb:Gamma}
\begin{tabular}{|c|c|c|c|}
\hline
& e & $\mu$ & $\tau$ \\ \hline
m(GeV) & $5 \times 10^{-4}$ & 0.105 & 1.777 \\ \hline
$\Gamma$(GeV) & $3.17 \times 10^{-61}$ & $2.99 \times 10^{-16}$ & $2.27 \times 10^{-9}$ \\ \hline
\end{tabular}
\end{table}
\begin{table}[]
\centering
\caption{Decay widths of $p$, $n$, $\pi^+$ and $\pi^0$.}
\label{tb:Gamma2}
\begin{tabular}{|c|c|c|c|c|}
\hline
& p & n & $\pi^+$ & $\pi^0$ \\ \hline
m(GeV) & 0.938 & 0.940 & 0.140 & 0.135 \\ \hline
$\Gamma$(GeV) & $9.94 \times 10^{-62}$ & $7.48\times 10^{-28}$ & $2.53 \times 10^{-17}$ & $7.74 \times 10^{-9}$ \\ \hline
\end{tabular}
\end{table}
\begin{table}[]
\centering
\caption{Mean decay length of $\mu$, $\tau$, $n$, $\pi^+$ and $\pi^0$. }
\label{tb:cm}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
& $\mu$ & $\tau$ & $n$ & $\pi^+$ & $\pi^0$ \\ \hline
$l$(cm) & $6.6 \times 10^4$ & $8.7 \times 10^{-3}$ & $2.64 \times 10^{13}$ & 780 & $2.56 \times 10^{-6}$ \\ \hline
\end{tabular}
\end{table}
\section{ }
Insert $E_k=M-i\Gamma/2$ to
\begin{eqnarray}
|\ket{\psi}|^2=\frac{{\rm const.}}{|E_k-E|^2},
\end{eqnarray}
one will have
\begin{eqnarray}
|\ket{\psi}|^2&=&\frac{{\rm const.}}{|M- i\Gamma/2-E|^2}\nonumber \\
&=&\frac{{\rm const.}}{(M- E)^2+\Gamma^2/4}.
\end{eqnarray}
In the region $M-4 \Gamma <E < M+ 4\Gamma$, the E dependence of $|\ket{\psi}|$ is shown in Fig.\ref{fig.1_5}. Also, we notice that
\begin{eqnarray}
\frac{d |\ket{\psi}|^2 }{d E}=0,~~{\rm when}~E=m,
\end{eqnarray}
which correspond with the maximum $|\ket{\psi}|^2=4/\Gamma^2$. Then we can verify $|\ket{\psi}|^2=2/\Gamma^2$ at $E=M+\Gamma/2$ and $E=M-\Gamma/2$, i.e. $\Gamma$ is the width of the half maximum of the resonance peak.
\begin{figure}[htb]
\centering
\includegraphics[width=8cm]{hw15.eps}
\caption{E dependence of $|\ket{\psi}|$ in $M-4 \Gamma <E < M+ 4\Gamma$ .\label{fig.1_5}}
\end{figure}
\section{ }
\begin{itemize}
\item By doing the replacement $m \to m-i\Gamma /2$ in
\begin{eqnarray}
\frac{1}{p^2-m^2},
\end{eqnarray}
we have
\begin{eqnarray}
\frac{1}{p^2-(m-i\Gamma /2)^2}&=&\frac{1}{p^2-m^2+im\Gamma + {\cal O}(\Gamma^2)}\\
&=&\frac{1}{p^2-m^2+i \epsilon},
\end{eqnarray}
where we assumed that $\Gamma$ is very small comparing to m and see $\epsilon=m\Gamma$.
\item We see that
\begin{eqnarray}
\frac{d}{d p^2}\frac{1}{(p^2-m^2)^2+(m\Gamma)^2}=0,~~{\rm when}~p^2=m^2,
\end{eqnarray}
where
\begin{eqnarray}
\frac{1}{(p^2-m^2)^2+(m\Gamma)^2}\big |_{\rm max}=\frac{1}{(m\Gamma)^2}.
\end{eqnarray}
Then we can easily verify that
\begin{eqnarray}
\frac{1}{(p^2-m^2)^2+(m\Gamma)^2}=\frac{1}{2(m\Gamma)^2},
\end{eqnarray}
when $p^2=m^2\pm m\Gamma$, i.e. $m\Gamma$ is the half width of the resonance at the half maximum when it is expressed in terms of $p^2$.
\end{itemize}
\end{document}