-
Notifications
You must be signed in to change notification settings - Fork 0
/
YangMa-hw08.tex
203 lines (189 loc) · 6.21 KB
/
YangMa-hw08.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
\documentclass[11pt]{article}
\usepackage{amsmath,graphicx,color,epsfig,physics}
%\usepackage{pstricks}
\usepackage{float}
\usepackage{subfigure}
\usepackage{slashed}
\usepackage{color}
\usepackage{multirow}
\usepackage{feynmp}
\usepackage[top=1in, bottom=1in, left=1.2in, right=1.2in]{geometry}
\def\del{{\partial}}
\begin{document}
\title{Particle physics HW8}
\author{Yang Ma}
\maketitle
\section{ }
In terms 4 real fields, we write
($\phi_k$, $k=1,2,3,4$):
\begin{eqnarray}
\phi &=& ( \phi^+, \phi^0 )^T, \\
\phi^+ &=& ( \phi_1 + i\phi_2 )/\sqrt2, \\
\phi^0 &=& ( \phi_3 + i\phi_4 )/\sqrt2,
\end{eqnarray}
so
\begin{eqnarray}
\phi^\dagger \phi &=&
\begin{pmatrix}
\phi^- & {\phi^0}^*
\end{pmatrix}
\begin{pmatrix}
\phi^+ \\ \phi^0
\end{pmatrix}
=\phi^+ \phi^- + \phi^0 {\phi^0}^*\\
&=&\frac{1}{2}[( \phi_1 + i\phi_2 ) ( \phi_1 - i\phi_2 )+( \phi_3 + i\phi_4 )( \phi_3 - i\phi_4 )]\\
&=&\frac{1}{2} ( \phi_1^2 +\phi_2^2 +\phi_3^2 +\phi_4^2).
\end{eqnarray}
Now we have
\begin{eqnarray}
V(\phi)&=&\frac{\lambda}{4}(\phi^\dagger \phi)^2+\mu^2 \phi^\dagger \phi \\
&=&\frac{\lambda^2}{16}(\phi_1^2+\phi_2^2+\phi_3^2+\phi_4^2)^2+\frac{\mu^2}{2}(\phi_1^2+\phi_2^2+\phi_3^2+\phi_4^2).
\end{eqnarray}
\section{ }
\begin{itemize}
\item We see that $V(\phi)$ is a function of $\phi^\dagger \phi$, so we need only to show that $\phi^\dagger \phi$ is invariant under global
$SO(4)$ transformation. Since $O^\dagger O=1$, we have
\begin{eqnarray}
\phi^\dagger \phi \to \phi^\dagger O^\dagger O \phi = \phi^\dagger \phi,
\end{eqnarray}
which leads to the invariance of $V(\phi)$.
\item Recall the Higgs potential
\begin{eqnarray}
V(\phi)=\frac{\lambda^2}{16}(\phi_1^2+\phi_2^2+\phi_3^2+\phi_4^2)^2+\frac{\mu^2}{2}(\phi_1^2+\phi_2^2+\phi_3^2+\phi_4^2),
\end{eqnarray}
and compare with the Klein-Gordon Lagrangian
\begin{eqnarray}
{\cal L}= \frac{1}{2} (\del_\mu \phi)(\del^\mu \phi) - \frac{1}{2}\phi,
\end{eqnarray}
we see that $\frac{\mu^2}{2} \phi^2_k$ terms provides the mass term for $\phi_k$, ($k=1,2,3,4$) and $m=\mu^2$ for all 4 bosons.
\end{itemize}
\section{ }
\begin{eqnarray}
\frac{dV}{d\phi_k}|_{\phi_j=<\phi_j>}&=&
(\frac{\lambda^2}{4}\sum_{i=1}^4 <\phi_i>^2+\mu^2) <\phi_k>=0
\end{eqnarray}
If $\mu^2<0$, we see there are two solutions, $<\phi_k>=0$ or
\begin{eqnarray}
(<\phi_1>,<\phi_2>,<\phi_3>,<\phi_4>) = (0,0,v,0).
\end{eqnarray}
Plug these two solutions back to the potential, we see that the second one minimizes the potential.
\section{ }
\begin{itemize}
\item With
\begin{eqnarray}
\phi_1 = \pi_1,~~\phi_2 = \pi_2,~~\phi_3 = v + h,~~\phi_4 = \pi_3,
\end{eqnarray}
we have
\begin{eqnarray}
<\pi_1> &=& <\phi_1> = 0 ,~~<\pi_2>= <\phi_2> = 0,\\
<h> &=& <\phi_3> - v =0 ,~~< \pi_3>=<\phi_4> =0.
\end{eqnarray}
\item
\begin{eqnarray}
V(\phi)&=&\frac{\lambda^2}{16}(\phi_1^2+\phi_2^2+\phi_3^2+\phi_4^2)^2+\frac{\mu^2}{2}(\phi_1^2+\phi_2^2+\phi_3^2+\phi_4^2) \\
&=&\frac{\lambda}{16}(\sum_{i=1}^3 \pi_i^2+(v+h)^2)^2+\frac{\mu^2}{2} (\sum_{i=1}^3 \pi_i^2+(v+h)^2)
\end{eqnarray}
Compare with the Klein-Gordon Lagrangian, we see the mass term of $\pi_k (k=1,2,3)$ is
\begin{eqnarray}
\sqrt{\frac{\lambda v^2}{8}+\frac{\mu^2}{2}}=0,
\end{eqnarray}
and that for $h$ is
\begin{eqnarray}
\sqrt{\frac{\lambda v^2}{4}+\frac{\mu^2}{2}}=\sqrt{\lambda} v/2
\end{eqnarray}
\item Write
\begin{eqnarray}
<\psi>=
\begin{pmatrix}
\pi_1\\\pi_2\\\pi_3\\v
\end{pmatrix}
=
\begin{pmatrix}
0\\0\\0\\v
\end{pmatrix}
\end{eqnarray},
then we see
\begin{eqnarray}
\begin{pmatrix}
0\\0\\0
\end{pmatrix}
\to
O
\begin{pmatrix}
0\\0\\0\\v
\end{pmatrix}
=
\begin{pmatrix}
0\\0\\0\\v
\end{pmatrix}.
\end{eqnarray}
\end{itemize}
\section{ }
Note we have shown $\phi^\dagger \phi={\phi^c}^\dagger \phi$ beforn and it is obvious that the Higgs potential can be written as \begin{eqnarray}
V(\phi)
= V(\phi^c)
= \frac{\lambda}{4} \frac{[\phi^\dagger \phi + (\phi^c)^\dagger \phi^c]^2}{4}
+\frac{\mu^2 [\phi^\dagger \phi + (\phi^c)^\dagger \phi^c]}{2}.
\end{eqnarray}
\section{ }
Take the transverse of
\begin{eqnarray}
\Phi \to \Phi' = \Phi U_R^\dagger,
\end{eqnarray}
then we have
\begin{eqnarray}
\Phi^T \to \Phi'^T = (\Phi U_R^\dagger)^T={ U_R^\dagger}^T \Phi^T= U_R^* \Phi^T,
\end{eqnarray}
where
\begin{eqnarray}
\Phi^T =
\begin{pmatrix}
\phi^c \\ \phi
\end{pmatrix}.
\end{eqnarray}
\section{ }
\begin{eqnarray}
Tr\{ \Phi^\dagger \Phi \}
= Tr
\begin{pmatrix}
{\phi^c}^\dagger \phi^c & {\phi^c}^\dagger \phi \\ \phi^\dagger \phi^c & \phi^\dagger \phi
\end{pmatrix}
=\phi^\dagger \phi + {\phi^c}^\dagger \phi^c
= 2 \phi^\dagger \phi
\end{eqnarray}
\section{ }
With $U_L^\dagger U_L=1$ and $U_R^\dagger U_R=1$, we have
\begin{eqnarray}
Tr\{\phi^\dagger \phi \} \to Tr\{U_R \phi^\dagger U_L^\dagger U_L \phi U_R^\dagger \}= Tr\{ U_R^\dagger U_R \phi^\dagger \phi \}=Tr\{ \phi^\dagger \phi \}
\end{eqnarray}
\section{ }
\begin{eqnarray}
<\Phi> &\to& <\Phi>'
= (U_{custodial})
\frac{v}{\sqrt 2}
\begin{pmatrix}
1&0 \\0 &1
\end{pmatrix}
(U_{custodial})^\dagger \\
&=&\frac{v}{\sqrt 2}
(U_{custodial})(U_{custodial})^\dagger \\
&=& \frac{v}{\sqrt 2}
\begin{pmatrix}
1&0 \\0 &1
\end{pmatrix}=<\Phi>
\end{eqnarray}
\section{ }
\begin{eqnarray}
\Phi &=&
\begin{pmatrix}
\phi^c & \phi
\end{pmatrix}
=
\begin{pmatrix}
( v + h -i\pi_3)/\sqrt{2} & (\pi_1 + i\pi_2)/\sqrt{2} \\
(-\pi_1 +i\pi_2)/\sqrt{2} & ( v + h +i\pi_3)/\sqrt{2}
\end{pmatrix}\\
&=&\frac{v+h}{\sqrt{2}} +\frac{i}{\sqrt 2}(\pi_1 \sigma^1+\pi_2\sigma^2+\pi_3\sigma^3 \\
&=& \frac{v+h}{\sqrt{2}} + \frac{i}{\sqrt 2} \sigma^k \pi'_k
\end{eqnarray}
\end{document}