-
Notifications
You must be signed in to change notification settings - Fork 0
/
YangMa-hw17.tex
197 lines (164 loc) · 6.95 KB
/
YangMa-hw17.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
\documentclass[11pt]{article}
\usepackage{amsmath,graphicx,color,epsfig,physics}
%\usepackage{pstricks}
\usepackage{float}
\usepackage{subfigure}
\usepackage{slashed}
\usepackage{color}
\usepackage{multirow}
\usepackage{feynmp}
\usepackage[top=1in, bottom=1in, left=1.2in, right=1.2in]{geometry}
\def\del{{\partial}}
\def\dgr{\dagger}
\def\eps{\epsilon}
\def\lmd{\lambda}
\begin{document}
\title{Particle physics HW17}
\author{Yang Ma}
\maketitle
\section{ }
\begin{eqnarray}
\frac{1}{n!}T\left[i\int d^4x {\cal L}_{int}(x)\right]^n & = &
\frac{1}{n!} T \int \prod_{k=1}^n d^4x_k i {\cal L}_{int}(x_k)\\
& =&\frac{1}{n!} \int T \left[\prod_{k=1}^{n}d^4x_k i{\cal L}_{int}(x_k)\right]\\
& = &\frac{1}{n!}\prod_{k=1}^{n-1} \int i\mathcal{L}_{int} (x_k) \Theta(x_k^0 - x_{k+1}^0) \int d^4 x_n i\mathcal{L}_{int}(x_n)
\end{eqnarray}
\section{ }
\begin{eqnarray}
&& d^4x' =\det({L^\mu}_\nu) d^4x = d^4x\\
&& {\cal L}'_{int}(x') = {\cal L}_{int}(x)\\
&& \int d^4x' {\cal L}'_{int}(x') = \int d^4x {\cal L}_{int}(x)
\end{eqnarray}
\section{ }
Skip.
\section{ }
\begin{eqnarray}
\bra{f}1\ket{i}=\bra{0}a(p_\tau h_\tau) b(p_{\overline \tau},h_{\overline \tau})a^\dagger (p_H) \ket{0}=\bra{0}a^\dagger (p_H) a(p_\tau,h_\tau)b(p_{\overline \tau},h_{\overline \tau})\ket{0} =0
\end{eqnarray}
\section{ }
Recall {\bf hw10-5}, by making the replacement for lepton mass
\begin{eqnarray}
m_l \to m_l (1+H/v)
\end{eqnarray}
in
\begin{eqnarray}
{\cal L}_{Yukawa} &=& l_L^\dagger M^l l_R + h.c. \\
&=& - (e_L^\dagger, \mu_L^\dagger, \tau_L^\dagger) {\rm diag}\{m_e,m_\mu,m_\tau\} (e_R,\mu_R,\tau_R)^T
+
h.c. \\
&=& - \sum_l g_{Hll} m_l (l_L^\dagger l_R + l_R^\dagger l_L),
\end{eqnarray}
we see
\begin{eqnarray}
{\cal L}_{Hll} &=& - \sum_l m_l (1+H/v) (l_L^\dagger l_R + l_R^\dagger l_L)
\end{eqnarray}
see $g_{H\tau\tau}=m_\tau/v$ in
\begin{eqnarray}
{\cal L}_{H\tau\tau} = - g_{H\tau\tau} H (l_{\tau,L}^\dagger l_{\tau,R} + l_{\tau,R}^\dagger l_{\tau,L})=- g_{H\tau\tau} H {\overline \Psi}_\tau \Psi_\tau.
\end{eqnarray}
\section{ }
\begin{itemize}
\item Quark and lepton fields are proportional to $\phi$ (or $\phi^c$) in ${\cal L}_{Yukawa}$ so the mass terms should be modified as $m\to m(1+H(x)/v)$ by $v \to v+H(x) = v(1+H(x)/v)$.
\item Neutrino fields are proportional to $\phi^2$ in ${\cal L}_{Yukawa}$ so the mass terms should be modified as $m\to m(1+H(x)/v)^2$ by $v \to v+H(x) = v(1+H(x)/v)$.
\item Recall
\begin{eqnarray}
D_\mu = \del_\mu +\frac{ig}{\sqrt 2} (T^+ W_\mu^+ + T^-W_\mu^-)+ig_Z(T^3-Q\sin^2\theta_W)Z_\mu + iQeA_\mu,
\end{eqnarray}
note that $Q=0$ for Higgs, so we have
\begin{eqnarray}
(D_\mu \phi)^\dagger (D^\mu \phi) = \frac{1}{ 2}\del_\mu H \del^\mu H + \frac{g^2}{2}W_\mu^-{W^+}^\mu \frac{(v+H)^2}{2}+\frac{g_Z^2}{4} \frac{(v+H)^2}{2} Z_\mu Z^\mu.
\end{eqnarray}
after $v \to v+H(x) = v(1+H(x)/v)$.
Then we see
\begin{eqnarray}
{\cal L}_{Higgs} &=& (D_\mu \phi)^\dagger (D^\mu \phi) - V(\phi) \\
&=& \frac{1}{2}\del_\mu H \del^\mu H + \frac{g^2}{2}W_\mu^-{W^+}^\mu \frac{(v+H)^2}{2}+\frac{g_Z^2}{4} \frac{(v+H)^2}{2} Z_\mu Z^\mu -V(\phi) \\
&=& \frac{1}{2} \del_\mu H \del^\mu H+
m_W^2 W^+_\mu {W^-}^\mu
+ \frac{m_Z^2}{2} Z_\mu Z^\mu -\frac{m_H^2}{2} H^2
+ \cdots
\end{eqnarray}
The $W$ and $Z$ mass terms should be modified as $m^2\to m^2(1+H(x)/v)^2$
\end{itemize}
Recall {\bf hw10-3}, {\bf hw10-4}, we can write the Higgs potential
\begin{eqnarray}
&&{\cal L}_{Higgs~potential}=-V(\phi) =-\frac{\lambda}{4} (\phi^\dagger \phi)^2 - \mu^2 (\phi^\dagger \phi)
=-\frac{\lambda}{4} (\phi^\dagger \phi)^2 + \frac{\lambda v^2}{4}(\phi^\dagger \phi) \\
&=& -\frac{\lambda}{4} \frac{(v+H)^4}{4} +\frac{\lambda v^2}{4}\frac{(v+H)^2}{2}
= -\frac{\lambda}{16}(H^4+4vH^3+4v^2H^2-v^4) \\
&=& -\frac{\lambda v^2}{2} \frac{H^2}{2}
-\frac{3 \lambda v}{2} \frac{H^3}{3!}
-\frac{3 \lambda }{2} \frac{H^4}{4!},
\end{eqnarray}
If we replace $\frac{1}{2} m_H^2 H^2$ by $m_H^2 \rightarrow m_H^2(1+H/v)^2$ we see:
\begin{eqnarray}
-\frac{1}{2} m_H^2 H^2 \to -\frac{1}{2} m_H^2 H^2 (1+\frac{H}{v})^2 &=& -\frac{1}{2} m_H^2 H^2 - \frac{m_H^2}{v} H^3 - \frac{m_H^2}{2v^2} H^4 \\
& =& -\frac{\lambda v^2}{4} H^2 - \frac{\lambda v}{2} H^3 - \frac{\lambda}{4} H^4
\end{eqnarray}
So we get the wrong $H^3$ and $H^4$ terms in the Higgs potential.
\section{ }
To calculate
\begin{eqnarray}
S_{fi}= -i\frac{m_\tau}{v} \int d^4 x
\bra{0} b(p_{\overline \tau},h_{\overline \tau}) a(p_\tau,h_\tau)
H(x) {\overline \Psi}_\tau(x) \Psi_\tau(x) a(p_H)^\dgr \ket{0} ,
\end{eqnarray}
we need to recall the three fields,
\begin{eqnarray}
H(x) &=& \int \frac{d^3p}{(2E)(2\pi)^3} [ a({\vec p}) e^{-ipx} + a(\vec p)^\dgr e^{ipx} ] \\
\Psi(x) &=& \int \frac{d^3p}{(2E)(2\pi)^3}
\sum_{h=\pm1/2} [a({\vec p},h) e^{-ipx} u({\vec p},h)
+ b({\vec p},h)^\dgr e^{ipx} v({\vec p},h)] \\
{\overline \Psi}(x) &=& \int \frac{d^3p}{(2E)(2\pi)^3} \sum_{h=\pm1/2}
{ a({\vec p},\lambda)^\dgr e^{ipx} {\overline u}({\vec p},\lambda)
+ b({\vec p},\lambda) e^{-ipx} {\overline v}({\vec p},\lambda) }
\end{eqnarray}
and pluig them into $S_{fi}$
\begin{eqnarray}
S_{fi} &=& -i\frac{m_\tau}{v} \int d^4 x
\bra{0} b(p_{\overline \tau},h_{\overline \tau}) a(p_\tau,h_\tau)
\int \frac{d^3p}{(2E)(2\pi)^3} a_H(p) e^{-ipx}
\nonumber \\&&\int \frac{d^3p'}{(2E')(2\pi)^3} \sum_{h'}
a_\tau(p',h')^\dgr e^{ip'x} {\overline u}(p',h')
\nonumber \\&& \int \frac{d^3p{''}}{(2E{''})(2\pi)^3} \sum_{h{''}}
b_{\overline \tau}(p{''},h{''})^\dgr e^{ip{''}x} v(p{''},h{''})
a(p_H)^\dgr \ket{0}
\end{eqnarray}
By using the commutation and anti-commutations among operators we finally obtain
\begin{eqnarray}
S_{fi}
&=& -i\frac{m_\tau}{v} \int d^4 x
\bra{0} e^{-ix p_H}
e^{ ix p_\tau} {\overline u}(p_\tau,h_\tau)
e^{ ix p_{\overline \tau}} v(p_{\overline \tau},h_{\overline \tau}) \ket{0} \\
&=&-i\frac{m_\tau}{v} \int d^4 x
e^{ix(p_\tau+p_{\overline \tau}-p_H)}
{\overline u}(p_\tau,h_\tau) v(p_{\overline \tau},h_{\overline \tau}) \bra{0}\ket{0} \\
&=& -i\frac{m_\tau}{v} (2\pi)^4 \delta^4( p_\tau+p_{\overline \tau}-p_H )
{\overline u}(p_\tau,h_\tau) v(p_{\overline \tau},h_{\overline \tau})
\end{eqnarray}
\section{ }
Since we know
\begin{eqnarray}
S^\dagger S = (1 + iT)^\dagger (1+iT)
= 1 -i(T^\dagger - T) + T^\dagger T
= 1 ,
\end{eqnarray}
one then have
\begin{eqnarray}
-i(T^\dagger - T) + T^\dagger T=0,
\end{eqnarray}
which is
\begin{eqnarray}
-i(T-T^\dagger) = T^\dagger T
\end{eqnarray}
\section{ }
Since we know, we can take the matrix element
\begin{eqnarray}
\bra{i} -i(T-T^\dagger) - T^\dagger T \ket{i} = -i(T-T*) - (T^\dagger T)_{ii} =0,
\end{eqnarray}
which leads to
\begin{eqnarray}
2{\rm Im}T_{ii}=(T^\dagger T)_{ii} = \sum_{f}\bra{i}T^\dagger \ket{f}\bra{i}T\ket{i} =\sum_f |T_{fi}|^2.
\end{eqnarray}
\end{document}