-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw10.tex
497 lines (445 loc) · 19.1 KB
/
hw10.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
\documentclass[12pt]{article}
\usepackage{amsmath,graphicx,color,epsfig,physics}
\usepackage{float}
\usepackage{subfigure}
\usepackage{slashed}
\usepackage{bbold}
\usepackage{color}
\usepackage{multirow}
\usepackage{feynmp}
\textheight=9.5in \voffset=-1.0in \textwidth=6.5in \hoffset=-0.5in
\parskip=0pt
\def\del{{\partial}}
\begin{document}
\begin{center}
{\large\bf HW10 for Advanced Particle Physics} \\
\end{center}
\vskip 0.2 in
Dear students,
Today, I review Higgs interactions in the SM. Please let me start
from the flavor diagonal Higgs couplings in the SM.
\begin{enumerate}
\item The SM Higgs boson does not have couplings between quarks and leptons
of different generations (absence of FCNC). This is because the same
Unitary matrices that rotates the current states to the mass
eigenstates rotates the Higgs-fermion-fermion couplings.
\item The custodial SU(2) symmetry of the Higgs potential can be extended
to include the Yukawa coupling if the top and the bottom quark masses
are the same.
\item Several consequences of custodial SU(2) symmetry and its breaking
are explained qualitatively. Serious understanding of the meaning of
precision measurements is possible only after you study quantization
of gauge theories and learn techniques to calculate quantum corrections.
\end{enumerate}
I noticed that it is useful to study $K^0-{\overline K^0}$ mixing at the quark
amplitude level (without actual calculation) to explain why the
extreme smallness of the FCNC has been such a critical data which
led us to the GIM mechanism, and through the CPV study in the same
amplitudes to the Kobayashi-Maskawa model.
I also noticed that it is relatively important to study neutrino
oscillation phenomenology a little bit, in order to know how the
MNS mixing matrix elements and the mass-squared differences are
measured. This is possible without using QFT, since neutrino
oscillation can be described completely by using quantum mechanics.
Parametrization of $V_{CKM}$ and $V_{MNS}$:
I explained in my lectures that 3 by 3 unitary matrix for quark
charged currents,
\begin{eqnarray}
\begin{pmatrix}
u_L^* & c_L^* & t_L^*
\end{pmatrix}
\sigma_-^\mu V_{CKM}
\begin{pmatrix}
d_L \\ s_L \\ b_L
\end{pmatrix}
\end{eqnarray}
has 4 real components, since $18-9$ (unitarity) $-5$ (quark phases except for
the common phase for all $6$ quarks) $= 4$. This 4 real components are
parametrized by 3 mixing angles and 1 phase (Kobayashi-Maskawa, 1973).
\begin{eqnarray}
V = O_{23} P O_{13} P^* O_{12}
\end{eqnarray}
Please note that the 3 orthogonal matrices are not cyclic in their
parametrization, which is adopted by PDG. They are defined as:
\begin{eqnarray}
(O_{23})_{23}&=&\sin\theta_{23} \\
(O_{13})_{13}&=&\sin\theta_{13} \\
(O_{12})_{12}&=&\sin\theta_{12}
\end{eqnarray}
$P$ is a diagonal phase matrix,
\begin{eqnarray}
P = {\rm diag}\{ 1, 1, e^{i\delta} \}
\end{eqnarray}
{\bf hw10-1}: Please obtain $V$ in terms of the 3 angles and $\delta$.
Please compare it with the matrix given in RPP, in
the review section 12, CKM quark-mixing matrix, {\bf Eq.(12.3)}.
Because no physical observable can change by changing the
phases of $u_L$, $c_L$, $s_L$, $b_L$, in the expression
\begin{eqnarray}
\begin{pmatrix}
u_L^* & c_L^* & t_L^*
\end{pmatrix}
\sigma_-^\mu
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
d_L & s_L & b_L
\end{pmatrix}
\end{eqnarray}
we can choose
\begin{eqnarray}
V_{ud}, V_{us}, V_{cb}, V_{tb} > 0
\end{eqnarray}
without loss of generality. By comparing the 4 elements with the
standard parametrization of {\bf hw10-1},
{\bf hw10-2}: please show that the ``defined region'' of the 3 angles can be
\begin{eqnarray}
0 \le \theta_{23}, \theta_{13}, \theta_{12} < \pi/2
\end{eqnarray}
Let us show why Weinberg could not apply his model to quarks (he called his MSM as a model for leptons). By the time of his studies in 1967, it was found by Cabibbo (1964) that all the known weak charged current interactions can be obtained from
\begin{eqnarray}
{\cal L}_{CC}
=
\frac{-g}{\sqrt{2}} W^-_\mu (e_L^\dagger) \sigma_-^\mu \nu_e +
\frac{-g}{\sqrt{2}} W^-_\mu (\mu_L^\dagger) \sigma_-^\mu \nu_\mu +
\frac{-g}{\sqrt{2}} W^+_\mu (u_L^\dagger) \sigma_-^\mu d_L'
+ h.c.
\end{eqnarray}
where by introducing the combination
\begin{eqnarray}
d_L' = \cos\theta_C d_L + \sin\theta_C s_L
\end{eqnarray}
Cabibbo showed that all three terms have exactly the same strengths
(more precisely, he showed that the product of $e_L-\nu_e$ current and
$\mu_L-\nu_\mu$ current has the same strength as the product of $e_L-\nu_e$ current and the $u_L-d_L'$ current). This universality of the charged currents between quarks and leptons motivated everybody to look for the gauge
theory of weak interactions. Weinberg was the first physicist who
succeeded on this.
But as we showed in {\bf hw09-5}, this model with 3 quarks gives the Z boson
coupling as
\begin{eqnarray}
&&-g_Z Z_\mu [(\frac{1}{2}-\frac{2}{3}x_W) u_L^\dagger \sigma_-^\mu u_L
+ (-\frac{1}{2}-\frac{-1}{3}x_W) {d'_L}^\dagger \sigma_-^\mu d_L' \nonumber\\
&&+ ( -\frac{2}{3}x_W) u_R^\dagger \sigma_+^\mu u_R
+ ( -\frac{-1}{3}x_W) d_R^\dagger \sigma_+^\mu d_R ]
\end{eqnarray}
The above interactions contain the $Z-d_L-s_L$ (FCNC) coupling:
\begin{eqnarray}
-g_Z Z_\mu (-1/2+(1/3)x_W) \cos\theta_C \sin\theta_C
[ d_L^\dagger \sigma_-^\mu s_L + s_L^\dagger \sigma_-^\mu d_L ]
\end{eqnarray}
This term contributes to the $K_0-{\overline K_0}$ transition,
\begin{eqnarray}
K_0(d \bar s) \to {\overline K_0}( \bar d s)
\end{eqnarray}
by a Z-boson exchange, with the amplitude proportional to
\begin{eqnarray}
\frac{g_Z^2}{m_Z^2} (-\frac{1}{2}+(\frac{1}{3}x_W)^2 (\cos\theta_C \sin\theta_C)^2
=
G_F \times 8 (-\frac{1}{2}+(\frac{1}{3}x_W)^2 (\cos\theta_C \sin\theta_C)^2
\end{eqnarray}
This contributes to the $K_L-K_S$ mass difference at the level of
\begin{eqnarray}
m_K^2 G_F = (0.5 GeV)^2 (10^{-5} GeV^{-2}) = 10^{-7},
\end{eqnarray}
in comparison to the measurement
$(m(K_L)-m(K_S))^2/m_K^2 = 10^{-20}$.
This huge discrepancy between the prediction of Weinberg's model with
Cabibbo universality, made him abandoned the idea of proposing his
model for all the particles including hadrons.
In the 4-quark model of GIM (1971), as we showed above, the cancellation
of $2 \times 2$ Unitary matrices makde all the Z-q-q couplings diagonal. There is no $Z-d-s$ couplings.
Immediately after t'Hooft proved the renormalizability of the
electroweak theory in 1971, Lee and Gaillard calculated the $K^0-{\overline K^0}$ mixing in the 4-quark model at one-loop level. It is something like Fig.\ref{fig.101}:
\begin{figure}[htb]
\centering
\includegraphics[scale=0.6]{hw10.eps}
\caption{ }\label{fig.101}
\end{figure}
The amplitude is very naively expressed as
\begin{eqnarray}
(g/\sqrt{2})^4/(m_W)^4 \times [ V_{ud} V_{us}^* f(m_u) + V_{cd} V_{cs}^* f(m_c) ]^2
\end{eqnarray}
where $f(m_u)$ and $f(m_c)$ corresponds to the contribution of the up quark
and charm quark, respectively. If $m_c=m_u$, $f(m_u) = f(m_c)$, and the
contribution vanishes since
\begin{eqnarray}
V_{ud} V_{us}^* + V_{cd} V_{cs}^* = (V^\dagger V)_{sd} = 0
\end{eqnarray}
from the Unitarity of the $2 \times 2$ mixing matrix. Therefore it reads
\begin{eqnarray}
(g/\sqrt{2})^4/(m_W)^4 (V_{ud} V_{us}^*)^2 \times [ f(m_u) - f(m_c) ]^2
\end{eqnarray}
Although I don't remember details, the last factor is proportional to
\begin{eqnarray}
((m_u^2 - m_c^2)/m_W^2)^2 = m_c^4/m_W^4
\end{eqnarray}
or
\begin{eqnarray}
((m_u - m_c)/m_W)^2 = m_c^2/m_W^2
\end{eqnarray}
and Lee and Gaillard could predict the charm quark mass to be around
$2$GeV, by comparing their calculation and the $K_L-K_S$ mass difference.
Please find the paper by B.W.Lee and M.Gaillard (1972), and compare
my expressions above and theirs. I may have missed some factors.\\
In the minimum SM, the absence of FCNC Higgs coupling is guaranteed
since all the quark and lepton masses are generated by only one v.e.v.,
\begin{eqnarray}
{\rm masses} = {\rm coupling} \times v
\end{eqnarray}
and the Higgs boson couplings appear by the replacement $v \to v+h$
Since the mass terms among the mass-eigenstates are diagonal by
definition, all the Higgs interactions are also diagonal, whose
strength is proportional to
$mass/v$
When we consider models beyond the SM, it is very important to keep
the flavor diagonality of all the interactions, including extended
gauge interactions and the extended Higgs interactions.
{\bf hw10-3}: In {\bf hw09}, I asked you to express the Higgs Lagrangian
\begin{eqnarray}
{\cal L}_{Higgs} = (D_\mu \phi)^\dagger (D^\mu \phi) - V(\phi)
\end{eqnarray}
by inserting the v.e.v.,
\begin{eqnarray}
<\phi> =
\begin{pmatrix}
0 \\ v/\sqrt2
\end{pmatrix}
\end{eqnarray}
Please obtain ${\cal L}_{Higgs}$ again, now for the Unitary gauge $\phi$,
\begin{eqnarray}
\phi =
\begin{pmatrix}
0 \\ (v+H)/\sqrt2
\end{pmatrix}
\end{eqnarray}
{\bf hw10-4}:
When we parametrize the above ${\cal L}_{Higgs}$ as
\begin{eqnarray}
{\cal L}_{Higgs} &=& \frac{1}{2} \del_\mu H \del^\mu H+
m_W^2 W^+_\mu {W^-}^\mu
+ \frac{m_Z^2}{2} Z_\mu Z^\mu
+ g_{HWW} H W^+_\mu {W^-}^\mu
\nonumber \\ &&+ \frac{g_{HZZ}}{2} H Z_\mu Z^\mu
+ \frac{g_{HHWW}}{2} HH W^+_\mu {W^-}^\mu
+ \frac{g_{HHZZ}}{4} HH Z_\mu Z^\mu
\nonumber \\ &&- \frac{m_H^2}{2} H^2
- \frac{g_{HHH}}{3!} H^3
- \frac{g_{HHHH}}{4!} H^4,
\end{eqnarray}
please express $m_W$, $m_Z$, $m_H$, $g_{HWW}$, $g_{ZWW}$, $g_{HHWW}$, $g_{HHZZ}$, $g_{HHH}$ and $g_{HHHH}$ in terms of $v$, $g$, $g_Z$, $\lambda$.
When we diagonalize the Yukawa matrices to obtain the relationship
between the mass eigenstates and the ``current'' states,
\begin{eqnarray}
{\cal L}_{Yukawa} &=&
-u_L^\dagger M^u u_R + d_L^\dagger M^d d_R + l_L^\dagger M^l l_R + h.c. \\
&=&
-(u_L^\dagger, c_L^\dagger, t_L^\dagger) {\rm diag}\{m_u,m_c,m_t\} (u_R,c_R,t_R)^T\nonumber \\
&&-(d_L^\dagger, s_L^\dagger, b_L^\dagger) {\rm diag}\{m_d,m_s,m_b\} (d_R,s_R,b_R)^T \nonumber \\ &&- (e_L^\dagger, \mu_L^\dagger, \tau_L^\dagger) {\rm diag}\{m_e,m_\mu,m_\tau\} (e_R,\mu_R,\tau_R)^T
+
h.c. \label{eq.10Lyukdiag}
\end{eqnarray}
Please observe that the Higgs-quark-quark couplings are also
diagonarlized at the same time, because they are obtained
simply by the replacement
\begin{eqnarray}
v \to v + H = v(1+H/v)
\end{eqnarray}
{\bf hw10-5}: Please obtain all the H-fermion-fermion couplings by making the replacement
\begin{eqnarray}
m_f \to m_f (1+H/v)
\end{eqnarray}
in the above Lagrangian (Eq.\ref{eq.10Lyukdiag}). When we write the $H-f-f$ couplings as
\begin{eqnarray}
{\cal L}_{Hff} = - \sum_f g_{Hff} H (f_L^\dagger f_R + f_R^\dagger f_L)
\end{eqnarray}
give $g_{Hff}$ in terms of $m_f$ and $v$, for all $f$={$u$, $d$, $s$, $c$, $b$, $t$, $e$, $\mu$, $\tau$}.
{\bf hw10-6}: Please show also, that the expression for Majorana neutrinos,
\begin{eqnarray}
{\cal L}_{H\nu\nu} = - \sum_{k=1,2,3} \frac{g_{Hkk}}{2} H (\nu_k \cdot \nu_k)
\end{eqnarray}
is different, when expressed in terms of $m_k$ ($k=1,2,3$) and $v$, because
the Majorana neutrino mass is not proportional to $v$, but to $v^2$. Can
we use the difference in the $H\nu\nu$ couplings to test Majorana vs Dirac?
When we consider violation of the classical level prediction of the
custodial $SU(2)$ symmetry, we often express it as deviation of the
Veltman's $\rho$ parameter from unity,
\begin{eqnarray}
\rho = \frac{G_{NC}}{G_{CC}}=\frac{ g_Z^2/m_Z^2}{g^2/m_W^2} = \frac{m_W^2}{m_Z^2 \cos^2\theta_W}
\end{eqnarray}
Since radiative corrections are proportional to the coupling constants,
we need to consider only the largest of all the Higgs boson couplings,
which are the HWW and HZZ couplings as well as the Yukawa couplings
of the 3'rd generation quarks:
\begin{eqnarray}
y^t &=& -\sqrt{2} m_t/v \\
y^b &=& -\sqrt{2} m_b/v
\end{eqnarray}
If we retain only the above two couplings of the Higgs boson to the
quarks, the Yukawa Lagrangian is simplified as
\begin{eqnarray}
{\cal L}_{Yukawa} = y^t (t_L^\dagger,b_L^\dagger) \phi^c t_R
+ y^b (t_L^\dagger,b_L^\dagger) \phi b_R
+ h.c. \label{eq.10lyuksp}
\end{eqnarray}
If we take the limit
\begin{eqnarray}
y^t = y^b = y \label{eq.10ylimt}
\end{eqnarray}
then Eq.\ref{eq.10lyuksp} can be expressed as
\begin{eqnarray}
{\cal L}_{Yukawa} &=& y
\begin{pmatrix}
t_L^\dagger & b_L^\dagger
\end{pmatrix}
(\phi^c t_R + \phi b_R) + h.c. \\
&=& y
\begin{pmatrix}
t_L^\dagger & b_L^\dagger
\end{pmatrix}
\begin{pmatrix}
\phi^c & \phi
\end{pmatrix}
\begin{pmatrix}
t_R \\ b_R
\end{pmatrix}+h.c.\\
&=& y
\begin{pmatrix}
t_L^\dagger & b_L^\dagger
\end{pmatrix}
\Phi
\begin{pmatrix}
t_R \\ b_R
\end{pmatrix} +h.c.\label{eq.10yukalmt}
\end{eqnarray}
The quartet field $\Phi$ %Eq.\ref{eq.8quarfild}
we introduced in {\bf hw08} appears. It is clear
that Eq.\ref{eq.10yukalmt} is invariant under the joint transformation,
\begin{eqnarray}
&&\Phi \to \Phi' = (U_L) \Phi U_R^\dagger \label{eq.10jotran1}\\
&&(t_L, b_L)^T \to (t_L', b_L')^T = U_L (t_L, b_L)^T \label{eq.10jotran2} \\
&&(t_R, b_R)^T \to (t_R', b_R')^T = U_R (t_R, b_R)^T \label{eq.10jotran3}
\end{eqnarray}
{\bf hw10-7}: Show the invariance of $L_{Yukawa}$ (Eq.\ref{eq.10lyuksp}) under the transformation Eq.(\ref{eq.10jotran1},\ref{eq.10jotran2},\ref{eq.10jotran3}), when $y_t = y_b$ (Eq.\ref{eq.10ylimt}).
Recalling that Eq.\ref{eq.10jotran1} is the symmetry of the Higgs potential
%(Eq.\ref{eq.8joitran})
in {\bf hw08}, we can tell that in the limit of Eq.\ref{eq.10ylimt}, the Yukawa coupling
satisfies the custodial $SU(2)$ symmetry after the symmetry breaking.
Therefore, in this limit, the $\rho$ parameter should not deviate from
unity by the quantum corrections due to Yukawa interactions. With
explicit calculation, we find
\begin{eqnarray}
\rho - 1 = const. [{y^t}^2 - {y^b}^2]/(4\pi)^2
= const. [m_t^2 - m_b^2]/[(2v^2)(4\pi)^2]
\end{eqnarray}
This quantum correction has been found to agree with the precision
measurements of the $W$ and $Z$ boson masses and their coupling strengths.
Indeed, the large top quark mass of
\begin{eqnarray}
m_t = {\cal O}(100GeV)
\end{eqnarray}
had been predicted from the above quantum corrections, before the top
quark was discovered in 1994. This was a great success of the
renormalizable theory of the elctroweak interactions, the Weinberg-Salam
model. The successful observation of the quantum corrections not only
proved the renormalizable theory of spontaneous gauge symmetry breaking,
but also the presence of the custodial $SU(2)$ symmetry in the symmetry
breaking interactions.
Let us obtain the $\rho$ parameter when a different Higgs multiplets
exist. Let us assume that there is an additional (doublet is necessary
to give masses to quarks and charged leptons, since their left-handed
components are doublets and their right-handed components are singlets)
Higgs boson, whose weak iso-spin ($SU(2)_L$ quantum number) is
$T$ ($T=1/2$ for doublets, 1 for triplets, $3/2$ for quartets,
...) and its $T^3=-y$ component obtains a v.e.v.
\begin{eqnarray}
<\phi_k> = \frac{v_k}{\sqrt{2}} {\rm unit}(T_k,T^3=-y_k)
\end{eqnarray}
Here ${\rm unit}(T_k,T^3=-y_k)$ is a column vector normalized to 1, which has
$2T_k+1$ components, and satisfies
\begin{eqnarray}
&&[{T^1}^2 + {T^2}^2 + {T^3}^2] {\rm unit}(T_k,T^3=-y_k) = T_k (T_k + 1) {\rm unit}(T_k,T^3=-y_k) \\
&&Y {\rm unit}(T_k,T^3=-y_k) = y_k {\rm unit}(T_k,T^3=-y_k) \\
&&T^3 {\rm unit}(T_k,T^3=-y_k) = -y_k {\rm unit}(T_k,T^3=-y_k)
\end{eqnarray}
The above conditions ensure that $<\phi_k>$ does not break $U(1)_{EM}$:
\begin{eqnarray}
Q <\phi_k> = (T^3+Y) <\phi_k> = 0
\end{eqnarray}
Now, let us obtain the W and Z masses from the invariant Lagrangian
of the Higgs boson $\phi_k$:
\begin{eqnarray}
(D^\mu \phi_k)^\dagger (D_\mu \phi_k)
\end{eqnarray}
We first find,
\begin{eqnarray}
D_\mu <\phi_k>
= \frac{ig_W}{\sqrt2} (T^+ W^+_\mu + T^- W^-_\mu) <\phi_k>
+ ig_Z T^3 Z_\mu<\phi_k>
\end{eqnarray}
since $\del_\mu <\phi_k> = 0$, and $Q=0$. We then find immediately,
\begin{eqnarray}
(D^\mu <\phi_k>)^\dagger (D_\mu <\phi_k>)
&=& (g_W/\sqrt2)^2 <\phi_k>^\dagger W^-_\mu {W^+}^\mu
( T^- T^+ + T^+ T^- ) <\phi_k> \nonumber \\
&&+ (g_Z)^2 <\phi_k>^\dagger Z_\mu Z^\mu (T^3 T^3) <\phi_k> \\
&=& (g_W v_k/2)^2 W^-_\mu {W^+}^\mu
{\rm unit}(T_k,-y_k)^T ( T^- T^+ \nonumber \\ &&+ T^+ T^- ) {\rm unit}(T_k,-y_k) + (g_Z v_k)^2/2 Z_\mu Z^\mu \nonumber \\
&& {\rm unit}(T_k,-y_k)^T (T^3)^2 {\rm unit}(T_k,-y_k)
\end{eqnarray}
{\bf hw10-8}: Show the above result.
From the definition of ${\rm unit}(T_k,-y_k)$, it is clear that
\begin{eqnarray}
{\rm unit}(T_k,-y_k)^T (T^3)^2 {\rm unit}(T_k,-y_k)
= (y_k)^2 {\rm unit}(T_k,-y_k)^T {\rm unit}(T_k,-y_k)
= (y_k)^2
\end{eqnarray}
The W mass term is slightly more difficult. In case of the SM Higgs
boson, since I chose the vacuum expectation value at $T^3=-Y=-1/2$,
$<\phi(T=1/2,T^3=-1/2)>$, we found
\begin{eqnarray}
&&{\rm unit}(1/2,-1/2)^T ( T^- T^+ + T^+ T^- ) {\rm unit}(1/2,-1/2) \nonumber\\
&=& {\rm unit}(1/2,-1/2)^T ( T^- T^+ ){\rm unit}(1/2,-1/2)
= 1
\end{eqnarray}
In general, if $T^3=-y_k$ state is not the minimum or the maximum $T^3$
states ($T^3=\pm T_k$), both terms survive, and we should compute the
normalization of the upper and lower states. This problem can be
bypassed if we note
\begin{eqnarray}
T^- T^+ + T^+ T^-
&=& 2 [(T^1)^2 + (T^2)^2 ] \\
&=& 2 [(T^2)^2 + (T^2)^2 + (T^3)^2] - 2(T^3)^2
\end{eqnarray}
whose matrix elements should be
\begin{eqnarray}
{\rm unit}(T_k,-y_k)^T ( T^- T^+ + T^+ T^- ) {\rm unit}(T_k,-y_k)
= 2 [ T_k(T_k+1) - (y_k)^2 ]
\end{eqnarray}
{\bf hw10-9}: Show the above result, and confirm that it agrees with our
minimum SM W mass, where $T_k=1/2$ and $|y_k|=1/2$.
We now find
\begin{eqnarray}
m_W^2 &=& \sum_k (g_W v_k/2)^2 2 [ T_k(T_k+1) - (y_k)^2 ] \\
m_Z^2 &=& \sum_k (g_Z v_k/2)^2 (y_k)^2
\end{eqnarray}
after summing over all the Higgs boson $\phi_k$ contributions.
By using the SM $v^2$ value,
\begin{eqnarray}
v^2 = 4 m_W^2/g_W^2 = (246GeV)^2
\end{eqnarray}
as the normalization, we obtain a following compact expression
\begin{eqnarray}
1-1/\rho = 2 [T_k(T_k+1)]-3(y_k)^2 (v_k/v)^2
\end{eqnarray}
{\bf hw10-10}: Derive the above equation. Show that the right hand side is
zero for $T_k=|y_k|=1/2$. Therefore, the iso-spin $1/2$ doublet Higgs
boson automatically satisfies $\rho=1$. How about the Higgs triplet,
$\phi(T=1,Y=-1)$ and $\phi(T=1,Y=0)$ ? Can you make a $\rho=1$ model by
choosing $v(T=1,Y=-1)$ and $v(T=1,Y=0)$ appropriately ?
That's all of hw10.\\
Best regards,\\
Kaoru
\end{document}