-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw13.tex
461 lines (405 loc) · 18.8 KB
/
hw13.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
\documentclass[12pt]{article}
\usepackage{amsmath,graphicx,color,epsfig,physics}
\usepackage{float}
\usepackage{subfigure}
\usepackage{slashed}
\usepackage{color}
\usepackage{multirow}
\usepackage{feynmp}
\textheight=9.5in \voffset=-1.0in \textwidth=6.5in \hoffset=-0.5in
\parskip=0pt
\def\del{{\partial}}
\begin{document}
\begin{center}
{\large\bf HW13 for Advanced Particle Physics} \\
\end{center}
\vskip 0.2 in
Dear students, \\
This week, I introduce the Dirac fermion and its equation of motion
the Dirac equation. We reconstruct Dirac equations by combining two
Weyl fermions, $\psi_L$ transforming under $S_L$, and $\psi_R$ transforming
under $S_R$,
\begin{eqnarray}
\psi_L \to \psi_L' = S_L \psi_L \label{eq.13_1a} \\
\psi_R \to \psi_R' = S_R \psi_R \label{eq.13_1b}
\end{eqnarray}
where
\begin{eqnarray}
S_L(\theta_k,\eta_k)
= e^{\sum_k \sigma^k (-i\theta_k -\eta_k)/2}\label{eq.13_2a} \\
S_R(\theta_k,\eta_k)
= e^{\sum_k \sigma^k (-i\theta_k +\eta_k)/2} \label{eq.13_2b}
\end{eqnarray}
{\bf hw13-1}: Please confirm that the operators in Eq.\ref{eq.13_2a} and Eq.\ref{eq.13_2b} are the
Lorentz transformations $L_A$ and $L_B$, respectively, which we
introduced in the last lectures. Because
\begin{eqnarray}
(S_L)^\dagger (S_R) = (S_R)^\dagger (S_L) = 1 \label{eq.13_2}
\end{eqnarray}
{\bf hw13-2}: Show Eq.\ref{eq.13_2}, or just explain by words if it is obvious to you.
We can form an invariant mass term (the coupling between two Weyl
fermions, $\psi_L$ and $\psi_R$)
\begin{eqnarray}
{\cal L}_{Dirac~mass}
= -m (\psi_L^\dagger \psi_R + \psi_R^\dagger \psi_L) \label{eq.13_3}
\end{eqnarray}
Because $\psi_L$ and $\psi_R$ in Eq.(\ref{eq.13_1a}, \ref{eq.13_1b}) are intrdouced as independent fields,
we can assign them the same charge for any phase transformations,
including the $U(1)_{EM}$ transformation:
\begin{eqnarray}
&&\psi_L \to \psi_L' = e^{iQ\theta} \psi_L \label{eq.13_4a} \\
&&\psi_R \to \psi_R' = e^{iQ\theta} \psi_R \label{eq.13_4b}
\end{eqnarray}
Here, we assign the same charge, $Q$, for both $\psi_L$ and $\psi_R$ fields.
{\bf hw13-3}: Show that the mass term in Eq.\ref{eq.13_3} is invariant under the $U(1)_{EM}$
phase transformations Eq.(\ref{eq.13_4a}, \ref{eq.13_4b}).
In case of Majorana mass term,
\begin{eqnarray}
{\cal L}_{Majorana~mass}
= -\frac{m}{2} ({\psi_L^c}^\dagger \psi_L + \psi_L^\dagger \psi_L^c) \label{eq.13_5}
\end{eqnarray}
with
\begin{eqnarray}
\psi_L^c = (i\sigma_2) \psi_L^* \label{eq.13_6}
\end{eqnarray}
although the mass term in Eq.\ref{eq.13_5} is Lorentz invariant because of
\begin{eqnarray}
&&\psi_L \to \psi_L' = S_L \psi_L \label{eq.13_7a} \\
&& \psi_L^c \to {\psi_L^c}' = S_R \psi_L^c \label{eq.13_7b}
\end{eqnarray}
{\bf hw13-3b}: Although we showed Eq.\ref{eq.13_7b} before, if you cannot reproduce the proof
in your mind, please prove it again.
It cannot be made invariant under the phase transformation.
\begin{eqnarray}
&& \psi_L \to \psi_L' = e^{ iQ\theta} \psi_L \label{eq.13_8a} \\
&& \psi_L^c \to {\psi_L^c}' = e^{-iQ\theta} \psi_L^c \label{eq.13_8b}
\end{eqnarray}
simply because $\psi_L^c$ is proportional to $\psi_L^*$.
In case of neutrino's (which has zero electromagnetic charge), the
non-conserved ``charge'' may be called ``neutrino number'', or the
``lepton number'', or even the ``fermion number''.
{\bf hw13-4}: Please show that the first term in the Majorana mass term in Eq.\ref{eq.13_5}
has the lepton number $2$, while the latter term has the lepton number
$-2$, when we choose $Q$=Lepton number in Eq.(\ref{eq.13_8a}, \ref{eq.13_8b})
Now, let us come back to the Dirac fermion. The free Lagrangian of
the Dirac fermion system (a system of $\psi_L$ and $\psi_R$ with the
same charge) is written as
\begin{eqnarray}
{\cal L}_{Dirac} = {\cal L}_{kin} + {\cal L}_{Dirac~mass} \label{eq.13_9}
\end{eqnarray}
with
\begin{eqnarray}
{\cal L}_{kin}
= \psi_L^\dagger i\del_\mu \sigma_-^\mu \psi_L
+ \psi_R^\dagger i\del_\mu \sigma_+^\mu \psi_R \label{eq.13_10}
\end{eqnarray}
and Eq.\ref{eq.13_3} for ${\cal L}_{Dirac mass}$. The e.o.m. from Eq.\ref{eq.13_9} reads
\begin{eqnarray}
&&i\del_\mu \sigma_-^\mu \psi_L = m \psi_R \label{eq.13_11a} \\
&& i\del_\mu \sigma_+^\mu \psi_R = m \psi_L \label{eq.13_11b}
\end{eqnarray}
{\bf hw13-5}: Derive the Dirac equations Eq.(\ref{eq.13_11a}, \ref{eq.13_11b}) from ${\cal L}_{Dirac}$.
{\bf hw13-6}: Show that the kinetic term ${\cal L}_{kin}$ is also invariant
under the phase transformation Eq.(\ref{eq.13_4a}, \ref{eq.13_4b}).
The only remaining task is to show that the kinetic term, ${\cal L}_{kin}$ Eq.\ref{eq.13_10}
is Lorentz invariant. In other words, we should yet to show that
\begin{eqnarray}
&& \psi_L^\dagger \sigma_-^\mu \psi_L = J_L^\mu \label{eq.13_6a} \\
&& \psi_R^\dagger \sigma_+^\mu \psi_R = J_R^\mu \label{eq.13_6b}
\end{eqnarray}
transform as four-vectors. We show this by using infinitesimal
transformations.
Let us first remember the (infinitesimal) Lorentz tranformation of
vectors.
\begin{eqnarray}
V^\mu \to V'^\mu = L(\theta_k,\eta_k) V^\mu \label{eq.13_7}
\end{eqnarray}
by using the $4 \times 4$ matrix representation:
\begin{eqnarray}
L(\theta_k,\eta_k)
&=& e^{-i( J_1 \theta_1 + J_2 \theta_2 + J_3 \theta_3
+K_1 \eta_1 + K_2 \eta_2 + K_3 \eta_3 )} \\
&=& 1 -i( J_1 \theta_1 + J_2 \theta_2 + J_3 \theta_3
+K_1 \eta_1 + K_2 \eta_2 + K_3 \eta_3 ) + h.o. \label{eq.13_8}
\end{eqnarray}
(note the minus sign before the generators, since we are transforming
the object ``vector'' or ``current'', rather than the coordinates).
{\bf hw13-7}: Please obtain the transformation Eq.\ref{eq.13_8} as a $4 \times 4$ matrix up to
the first order (in $\theta_k$ and $\eta_k$), by using the $4 \times 4$ matrix
representations of all the $6$ generators. Please give your answer
as Eq.\ref{eq.13_9_2}:
\begin{eqnarray}
L=
\begin{pmatrix}
1 & \eta_1 & \cdots & \cdots \\
\cdots & 1 &-\theta_3 & \cdots \\
\cdots & \cdots & 1 & \cdots \\
\cdots & \cdots & \cdots & 1
\end{pmatrix} \label{eq.13_9_2}
\end{eqnarray}
Our task is hence simply to show that $J_L^\mu$ and $J_R^\mu$ in Eq.(\ref{eq.13_6a}, \ref{eq.13_6b}),
respectively, transform exactly the same way as Eq.\ref{eq.13_9_2}.
Let us start with $J_L^\mu$
\begin{eqnarray}
J_L^\mu
&=& \psi_L^\dagger \sigma_-^\mu \psi_L
\to J_L'^\mu
= \psi_L'^\dagger \sigma_-^\mu \psi_L'
= (S_L \psi_L)^\dagger \sigma_-^\mu (S_L \psi_L)
= \psi_L^\dagger (S_L)^\dagger \sigma_-^\mu (S_L) \psi_L \label{eq.13_10_2}
\end{eqnarray}
Therefore, all we should study is the transformation
\begin{eqnarray}
\sigma_-^\mu \to (S_L)^\dagger \sigma_-^\mu (S_L) \label{eq.13_11}
\end{eqnarray}
in the infinitesimal transformation
\begin{eqnarray}
S_L(\theta_k,\eta_k)
&=& e^{ \sum_k \sigma^k (-i\theta_k -\eta_k)/2}
= 1 + \sum_k \sigma^k (-i\theta_k -\eta_k)/2 + h.o. \label{eq.13_12a} \\
S_L^\dagger(\theta_k,\eta_k)
&=& e^{ \sum_k \sigma^k (+i\theta_k -\eta_k)/2}
= 1 + \sum_k \sigma^k (+i\theta_k -\eta_k)/2 + h.o. \label{eq.13_12b}
\end{eqnarray}
By inserting Eq.(\ref{eq.13_12a},\ref{eq.13_12b}) into Eq.\ref{eq.13_11}, we find
\begin{eqnarray}
\sigma_-^\mu
\to {\sigma_-^\mu}'
&=& (S_L)^\dagger \sigma_-^\mu (S_L) \\
&=& (1 + \sum_k \sigma^k (+i\theta_k -\eta_k)/2 )
\sigma_-^\mu
(1 + \sum_k \sigma^k (-i\theta_k -\eta_k)/2 ) \\
&=& \sigma_-^\mu
+\sum_k \frac{i\theta_k}{2} [\sigma^k,\sigma_-^\mu]
-\sum_k \frac{\eta_k}{2} \{ \sigma^k,\sigma_-^\mu \} + h.l. \label{eq.13_13}
\end{eqnarray}
where $[A,B] = AB-BA$, $\{A,B\}=AB+BA$.
{\bf hw13-8}: Please calculate the commutator and anti-commutator in Eq.\ref{eq.13_13} for $\mu=0, 1, 2, 3$, separately, by using the properties of the
$\sigma$ matrices. Show that the result agrees exactly with Eq.\ref{eq.13_9_2}.
{\bf hw13-9}: Repeat the above proof for $J_R^\mu$, by noting that the only
difference between $J_L^\mu$ and $J_R^\mu$ are the difference between
$\sigma_-^\mu$ and $\sigma_+^\mu$, i.e., they are the same for $\mu=0$,
but the sign is opposite for $\mu=1,2,3$, whereas ($S_L$) and ($S_R$) differ
only in the sign of $\eta_k$. Show that the result agree exactly
with Eq.\ref{eq.13_9_2} again.
{\bf hw13-10}: After proving (in {\bf hw13-8,9}) that the combinations Eq.(\ref{eq.13_6a},\ref{eq.13_6b}) transform as four vectors, confirm that none of the combinations below
\begin{itemize}
\item $\psi_L^\dagger \sigma_+^\mu \psi_L$,
\item $\psi_R^\dagger \sigma_-^\mu \psi_R$,
\item $\psi_L^\dagger \sigma_+^\mu \psi_R$ and its hermetian conjugate
\item $\psi_L^\dagger \sigma_-^\mu \psi_R$ and its hermetian conjugate
\end{itemize}
transforms as a vector. Please don't waste your time by explicitly
calculating the transformations of the above objects, but try to
explain the reason by words. I think that it is possible to explain.
This homework, {\bf hw13-8} and {\bf hw13-9}, completes the proof that the Dirac
Lagrangian Eq.\ref{eq.13_10}+Eq.\ref{eq.13_3}
\begin{eqnarray}
{\cal L}_{Dirac}
&=& {\cal L}_{kin} + {\cal L}_{Dirac~mass} \\
&=& \psi_L^\dagger i\del_\mu \sigma_-^\mu \psi_L
+ \psi_R^\dagger i\del_\mu \sigma_+^\mu \psi_R
-m (\psi_L^\dagger \psi_R + \psi_R^\dagger \psi_L) \label{eq.13_15}
\end{eqnarray}
is invariant under the Lorentz transformation, from which we find
the Lorentz covariant equation of motion,
\begin{eqnarray}
&&i\del^\mu \sigma_-^\mu \psi_L = m \psi_R \label{eq.13_16a}\\
&& i\del^\mu \sigma_+^\mu \psi_R = m \psi_L\label{eq.13_16b}
\end{eqnarray}
the Dirac equation. We reproduced what Dirac found in 1928!
It is not difficult now to show that the Dirac equations, Eq.(\ref{eq.13_16a}, \ref{eq.13_16b}), are Lorentz covariant, i.e., the left-hand-side and the
right-hand-side of the equations transform the same way under an
arbitrary Lorentz transformation.
We showed in {\bf hw13-8,9} that the following combinations are Lorentz
invariant:
\begin{eqnarray}
&& (\psi_L)^\dagger V_\mu \sigma_-^\mu (\psi_L) \label{eq.13_17a}\\
&&(\psi_R)^\dagger V_\mu \sigma_+^\mu (\psi_R) \label{eq.13_17b}
\end{eqnarray}
For instance, the Lorentz invariance of Eq.\ref{eq.13_17a} can be expressed as
\begin{eqnarray}
(\psi_L)^\dagger V_\mu \sigma_-^\mu (\psi_L)
\to (\psi_L')^\dagger V_\mu' \sigma_-^\mu (\psi_L')
= (\psi_L)^\dagger (S_L)^\dagger V_\mu' \sigma_-^\mu (S_L) (\psi_L)
= (\psi_L)^\dagger V_\mu \sigma_-^\mu (\psi_L) \label{eq.13_18}
\end{eqnarray}
The above transformation rule can be read as the product
\begin{eqnarray}
(\psi_L)^\dagger B \label{eq.13_19}
\end{eqnarray}
is Lorentz invariant, when we regard the combination
\begin{eqnarray}
B = \{V_\mu \sigma_-^\mu (\psi_L)\} \label{eq.13_20}
\end{eqnarray}
as a two-spinor (complex two component column vector). The invariance
Eq.\ref{eq.13_18} can now be expressed as
\begin{eqnarray}
(\psi_L)^\dagger B \to (\psi_L')^\dagger B'
= (\psi_L)^\dagger (S_L)^\dagger B'
= (\psi_L)^\dagger B \label{eq.13_21}
\end{eqnarray}
This tells that $B$ should transform as
\begin{eqnarray}
B \to B' = \{(S_L)^\dagger\}^{-1} B = (S_R) B \label{eq.13_22}
\end{eqnarray}
because $(S_L)^\dagger (S_R) = 1$ (Eq.\ref{eq.13_2}). Now we showed that both the left-hand-side and the right-hand-side of the Dirac equation Eq.\ref{eq.13_16a} transform by $(S_R)$.
{\bf hw13-11}: Show that the l.h.s. of the Dirac Eq.\ref{eq.13_16b} is trsnformed by $(S_L)$, just like $\psi_L$ in the r.h.s. of the equation.
This completes the proof of the Lorentz invariance of the Dirac
Lagrangian and the covariance of the Dirac equations. When I was a
student, I had hard time following the proof given in the textbooks.
We could do this so easily simply because we learned from his successors
like Weyl and Majorana, who found very simple (two component)
representations of the Lorentz group, which allows us to describe all
Lorentz transformations in the $2 \times 2$ matrix basis.
Please appreciate the fact that the Dirac Lagrangian Eq.\ref{eq.13_15} and hence the Dirac equation Eq.(\ref{eq.13_16a}, \ref{eq.13_16b}) describe a system of two Weyl fermions, one transforming under $S_L$, and the other transforming under $S_R$, which are coupled by the invariant mass term (Eq.\ref{eq.13_3}).
Because this is exactly how we understand the nature now in the SM
of particle physics, I believe that this is the right way to understand
Dirac fermions and the Dirac equations.
Let us show here how the Dirac four-spinor is related to our two-spinor
in the so-called Weyl or Chiral representation of the $\gamma$ matrices.
Let us first introduce a Dirac four-spinor fermion field:
\begin{eqnarray}
\Psi(x) = ( \psi_L(x), \psi_R(x) )^T =
\begin{pmatrix}
\psi_L(x) \\ \psi_R(x)
\end{pmatrix} \label{eq.13_23}
\end{eqnarray}
where I use $\Psi$ for 4-spinor, $\psi_L$ and $\psi_R$ for 2-spinors. The
Dirac Lagrangian is written as
\begin{eqnarray}
{\cal L}_{Dirac} = {\overline \Psi} i\del \gamma \Psi - m {\overline \Psi} \Psi \label{eq.13_24}
\end{eqnarray}
where I introduce a notation for Lorentz invariant contraction
\begin{eqnarray}
\del \gamma = \del_\mu \gamma^\mu \label{eq.13_25}
\end{eqnarray}
with
\begin{eqnarray}
\gamma^\mu =
\begin{pmatrix}
0 & \sigma_+^\mu \\
\sigma_-^\mu & 0
\end{pmatrix} \label{eq.13_26}
\end{eqnarray}
and
\begin{eqnarray}
{\overline \Psi} &=& \Psi^\dagger \gamma_0
= ( \psi_L^\dagger, \psi_R^\dagger )
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix} \\
&=& ( \psi_R^\dagger, \psi_L^\dagger ) \label{eq.13_27}
\end{eqnarray}
is called Dirac conjugate.
{\bf hw13-12}: Please show that the Lagrangian in Eq.\ref{eq.13_24} is exactly the same as ${\cal L}_{Dirac}$ in Eq.\ref{eq.13_15} which we studied above. Please observe the importance of Dirac conjugate Eq.\ref{eq.13_27}, which exchange the ordering of $\psi_L^\dagger$ and $\psi_R^\dagger$. We already learned that this replacement ensures the Lorentz invariance of both terms in
${\cal L}_{Dirac}$ (Eq.\ref{eq.13_24}) expressed in terms of the 4-spinor Eq.\ref{eq.13_23}.
The equation of motion (the Dirac equation) is then
\begin{eqnarray}
( i\del \gamma - m ) \Psi(x) = 0 \label{eq.13_28}
\end{eqnarray}
{\bf hw13-13}: Please show that the Dirac equation Eq.\ref{eq.13_28} is the same as the Dirac equation Eq.(\ref{eq.13_16a}, \ref{eq.13_16b}), we obtained above.
We can show by multiplying $i\del \gamma + m $ from the left on Eq.\ref{eq.13_28}
\begin{eqnarray}
[ i\del \gamma + m ] [ i\del \gamma - m ] \Psi(x)
= [ \del_\mu \del^\mu + m^2 ] \Psi(x) = 0. \label{eq.13_29}
\end{eqnarray}
That is, all four components of $\Psi(x)$ satisfy the Klein-Gordon eq.
{\bf hw13-14}: Show that the necessary condition for Eq.\ref{eq.13_29} to hold is the
anti-commutation relation among $\gamma^\mu$:
\begin{eqnarray}
\{ \gamma^\mu, \gamma^\nu \} = 2 g^{\mu\nu}. \label{eq.13_30}
\end{eqnarray}
{\bf hw13-15}: Show that the anti-commutator Eq.\ref{eq.13_30} holds for our representation
Eq.\ref{eq.13_26} of the $\gamma$ matrices (called Chiral or Weyl representation).
You should prove the following two identities:
\begin{eqnarray}
&& \sigma_+^a \sigma_-^b + \sigma_+^b \sigma_-^a = 2 g^{ab} \label{eq.13_31a}\\
&& \sigma_-^a \sigma_+^b + \sigma_-^b \sigma_+^a = 2 g^{ab} \label{eq.13_31b}
\end{eqnarray}
{\bf hw13-16}: Please show
\begin{eqnarray}
{\gamma^0}^\dagger = \gamma^0 , ~~~
{\gamma^i}^\dagger = -\gamma^i (i=1,2,3) \label{eq.13_32}
\end{eqnarray}
in Chiral representation Eq.\ref{eq.13_26}. $\gamma^0$ is Hermetian and $\gamma^i$ are
anti-Hermetian.
Let us introduce the $\gamma^5 = \gamma_5$ matrix as follows.
\begin{eqnarray}
\gamma^5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3 \label{eq.13_33}
\end{eqnarray}
{\bf hw13-17}: Please show
\begin{eqnarray}
&& \{ \gamma^5, \gamma^\mu \} = 0~~ for~\mu=0,1,2,3 \label{eq.13_34a} \\
&& (\gamma^5)^2 = 1 \label{eq.13_34b}
\end{eqnarray}
hold for arbitrary representations of $\gamma$ matrices which satisfy the
anti-commutation relations Eq.\ref{eq.13_30}.
In the Chiral Representation Eq.\ref{eq.13_26}, $\gamma^5$ is diagonal
\begin{eqnarray}
\gamma^5=
\begin{pmatrix}
-1 & 0\\
0 & 1
\end{pmatrix} \label{eq.13_35}
\end{eqnarray}
where $1$ is unit $2 \times 2$ matrix. Let us now introduce chiarl projectors:
\begin{eqnarray}
&&P_L = ( 1 - \gamma^5 )/2 =
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix} \label{eq.13_36a} \\
&& P_R = ( 1 + \gamma^5 )/2 =
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix} \label{eq.13_36b}
\end{eqnarray}
{\bf hw13-18}: Derive Eq.\ref{eq.13_35}, and observe the projective properties Eq.(\ref{eq.13_37a}, \ref{eq.13_37b}, \ref{eq.13_37c}, \ref{eq.13_37d}):
\begin{eqnarray}
&&(P_L)^2 = P_L \label{eq.13_37a}\\
&&(P_R)^2 = P_R,\label{eq.13_37b} \\
&&(P_L)(P_R) = 0, \label{eq.13_37c} \\
&&P_L + P_R = 1 \label{eq.13_37d}
\end{eqnarray}
The property Eq.(\ref{eq.13_37a},\ref{eq.13_37b}) is called projective, Eq.\ref{eq.13_37c} tells that the two
projections are orthogonal, Eq.\ref{eq.13_37d} tells that the two projections are
complete (no more projections).
By using the completeness condition Eq.\ref{eq.13_37d}, we can express all 4-spinors
$\Psi$ as a summation over two states (projections)
\begin{eqnarray}
&&\Psi = (P_L + P_R) \Psi = \Psi_L + \Psi_R \label{eq.13_38a} \\
&& P_L \Psi = \Psi_L =
\begin{pmatrix}
\psi_L \\ 0
\end{pmatrix} \label{eq.13_38b} \\
&&P_R \Psi = \Psi_R =
\begin{pmatrix}
0 \\ \psi_R
\end{pmatrix}\label{eq.13_38c}
\end{eqnarray}
Here 0's in Eq.(\ref{eq.13_38b}, \ref{eq.13_38c}) are 2-component column vectors $(0,0)^T$.
In this notation, $\Psi_L$ and $\Psi_R$ are still $4$-spinors, containing
one Weyl $2$-spinors $\psi_L$ and $\psi_R$, respectively, together with
$2$-component nul spinors, $(0,0)^T$. Because two-spinors $\psi_L$ and
$\psi_R$ transform differently under the Lorentz transformation, as
we showed in Eq.(\ref{eq.13_1a},\ref{eq.13_1b}), upper and lower halves of a Dirac four-spinor
transform differently under Lorentz transformation. This is the
reason why it was hard for me (and many students) to understand the
property of the Dirac fermions.
When I studied Dirac fermions in 1985 (6 years after I got my PhD),
chiral representation was treated as just one of many representations
of the Dirac fields and $\gamma$ matrices. I chose it simply because
it is the only representation which makes massless neutrino wave
function simple. We can now tell that only in the chiral representation
the origin of the Dirac fermions in the SM is manifest. It is only
in the chiral representation that the Lorentz transformation is
factorized into upper and lower two-spinor components. The SM tells
us that those two components were independent (massless spin $1/2$)
particles before the symmetry breakdown.
That's all for hw13.
Best regards,
Kaoru
\end{document}