-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw17.tex
510 lines (471 loc) · 22.5 KB
/
hw17.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
\documentclass[12pt]{article}
\usepackage{amsmath,graphicx,color,epsfig,physics}
\usepackage{float}
\usepackage{subfigure}
\usepackage{slashed}
\usepackage{color}
\usepackage{multirow}
\usepackage{feynmp}
\textheight=9.5in \voffset=-1.0in \textwidth=6.5in \hoffset=-0.5in
\parskip=0pt
\def\del{{\partial}}
\def\dgr{\dagger}
\def\eps{\epsilon}
\begin{document}
\begin{center}
{\large\bf HW17 for Advanced Particle Physics} \\
\end{center}
\vskip 0.2 in
Dear students,
We are now ready to introduce QFT in covariant perturbation theory.
First, the full Lagrangian of a QFT is divided into the free part
and the interaction part,
\begin{eqnarray}
{\cal L} = {\cal L}_{free} + {\cal L}_{int} \label{eq.17_1}
\end{eqnarray}
We solve the equation of motions of the free Lagrangian, and use the
solutions (the free field expansions for spin $0$, $1/2$, and $1$ particles
which we derived in the past lectures) as the basis of evaluating
the effects of the interactions in ${\cal L}_{int}$. In this basis (the
interaction basis), the S-matrix (Scattering matrix) is defined as
\begin{eqnarray}
S = {\cal T} e^{ i\int d^4x {\cal L}_{int}(x) } \label{eq.17_2}
\end{eqnarray}
where the exponential factor is defined as usual
\begin{eqnarray}
e^{ i\int d^4x {\cal L}_{int}(x) }
=
\sum_{n=0}^\infty \frac{1}{n!} [i\int d^4x {\cal L}_{int}(x)]^n \label{eq.17_3}
\end{eqnarray}
whereas the $T$ simbol stands for Time-ordering, whenever the operators
with two different space-time points ($x^\mu$) are multiplied, such that
an operator in the left-hand-side applies after the operator in the
right-hand-side. For instance,
\begin{eqnarray}
{\cal T} A(x) B(y) = \Theta(x^0-y^0) A(x) B(y)
\pm \Theta(y^0-x^0) B(y) A(x) \label{eq.17_4}
\end{eqnarray}
where the plus sign is chosen when $A(x)$ and $B(y)$ commute, while the
minus sign is chosen when they anti-commute. Please note that when
$A(x)$ and $B(y)$ are ${\cal L}_{int}(x)$ and ${\cal L}_{int}(y)$, they always commute because
the Lagrangian density is a scalar (bosonic).
Therefore,
\begin{eqnarray}
S &=& {\cal T} e^{ i\int d^4x {\cal L}_{int}(x) }
= {\cal T} \sum_{n=0}^\infty (1/n!) [i\int d^4x {\cal L}_{int}(x)]^n \nonumber \\
&=& 1
+ i\int d^4x {\cal L}_{int}(x)
+ \frac{1}{2} {\cal T} [i\int d^4x {\cal L}_{int}(x)] [i\int d^4y{\cal L}_{int}(y)]
+ \cdots \nonumber \\
&&+ \frac{1}{n!} {\cal T} [i\int d^4x_1 {\cal L}_{int}(x_1)] [i\int d^4x_2 {\cal L}_{int}(x_2)]
\cdots [i\int d^4x_n {\cal L}_{int}(x_n)]
+ \cdots \label{eq.17_5}
\end{eqnarray}
where the time-ordering applies for the $n=2$ and higher power terms.
Let us first note that the $1/n!$ factor in the n'th power cancels once
we introduce the time-ordering
\begin{eqnarray}
\frac{1}{n!} {\cal T} [i\int d^4x {\cal L}_{int}(x)]^n &=&
[i\int d^4x_1{\cal L}_{int}(x_1)] \Theta(x_1^0-x_2^0)
[i\int d^4x_2 {\cal L}_{int}(x_2)] \Theta(x_2^0-x_3^0) \nonumber \\
&&[i\int d^4x_3 {\cal L}_{int}(x_3)] \Theta(x_3^0-x_4^0)
\cdots
[i\int d^4x_n {\cal L}_{int}(x_n)] \label{eq.17_6}
\end{eqnarray}
because there are $n!$ combinations of our labeling of
$\{x_1^\mu, x_2^\mu, x_3^\mu, ..., x_n^\mu\}$, while all labeling cases
give exactly the same results, cancelling the $1/n!$ factor.
{\bf hw17-1}: Show Eq.\ref{eq.17_6}, or equivalently, Eq.\ref{eq.17_8} below.
hint: Please note that the region of integration over $x_k^0$ is
$\infty > x_k^0 > -\infty$ for all $k=1$ to $n$. In the r.h.s. of Eq.\ref{eq.17_6}, the integration region is restricted to
\begin{eqnarray}
\infty > x_1^0 > x_2^0 > \cdots > x_{n-1}^0 > x_n^0 > -\infty \label{eq.17_7}
\end{eqnarray}
We can generalize the above theorem to a $n$'th power of an arbitrary
integral in the region $b > t > a$:
\begin{eqnarray}
\frac{1}{n!} [ \int_a^b dt F(t) ]^n &=& [ \int dt_1 F(t_1)] \Theta(b-t_1) \cdot \Theta(t_1-t_2) [ \int dt_2 F(t_2)] \Theta(t_2-t_3) \cdots \nonumber \\&& [ \int dt_{n-1} F(t_{n-1})] \Theta(t_{n-1}-t_n) [ \int dt_n F(t_n)] \Theta(t_n-a) \label{eq.17_8}
\end{eqnarray}
When $F(t)>0$ in the whole region of $b>t>a$ (positive definite), it leads
to a powerful tool to simulate exponential of complicated functions
(such as a Sudakov form factor in QED and QCD) by a Monte Carlo method.
When you hear ``ordering parameter'', you may recall this theorem.
The scattering amplitudes in perturbative QFT are defined as the matrix
elements of the above S-matrix Eq.\ref{eq.17_2}, sandwiched between the initial state from the right-hand-side and the final state from the left-hand-side:
\begin{eqnarray}
S_{fi}
&=& \bra{final~state} S \ket{initial~state}
= \bra{final~state} T e^{ i\int d^4x {\cal L}_{int}(x) } \ket{initial~state} \\
&=& \sum_n \bra{final~state} \frac{1}{n!}T[i\int d^4x {\cal L}_{int}(x)]^n \ket{initial~state} \label{eq.17_9}
\end{eqnarray}
Here, the initial and the final states are, respectively, a set of
particles with definite three-momentum and on-shell energy
($E = \sqrt{|{\vec p}|^2+m^2}$), such as
\begin{eqnarray}
&&\ket {in}=a^\dgr(p_1) b^\dgr(p_2) \ket{0} \label{eq.17_10a} \\
&&\ket {in}= a^\dgr(p_3) b^\dgr(p_4) \ket{0} \label{eq.17_10b}
\end{eqnarray}
for a pair of a particle and an anti-particle. All the external particle
energies are on their mass-shell, $p_k^0 = E_k = \sqrt{|{\vec p}_k|^2+m_k^2}$, and hence their wave functions are plane waves,
\begin{eqnarray}
e^{ -ip_k x } = e^{ -i(E_k t - {\vec p}\cdot {\vec x}) } \label{eq.17_11}
\end{eqnarray}
The time-ordering of the S-matrix Eqs.(\ref{eq.17_2}.\ref{eq.17_5},\ref{eq.17_6}) tells that only the right-most operators with the earliest time can match the initial state operators, while the left-most operators with the last time can match the final state operators. If the order of the expansion is $n=2$ or larger, field operators inside several ${\cal L}_{int}(x_k)$'s can be connected within the time-ordering constraint.
The S-matrix is Poincare invariant because
\begin{eqnarray}
\int d^4x {\cal L}_{int}(x) \to \int d^4x' {\cal L}_{int}(x')' = \int d^4x {\cal L}_{int}(x). \label{eq.17_12}
\end{eqnarray}
and also because the time-ordering is independent of the origin of time.
{\bf hw17-2}: Can you show the invariance Eq.\ref{eq.17_12} for the transformation Eq.\ref{eq.17_13}.
\begin{eqnarray}
x^\mu \to x'^\mu = L^\mu_\nu x^\nu - a^\mu \label{eq.17_13}
\end{eqnarray}
Because of the Poincare invariance, the matrix elements $S_{fi}$ is
nonzero only when the four momentum are conserved. In our example of
{\bf (19a,b), don't know what that is, to be determinded} ;
\begin{eqnarray}
p_1^\mu + p_2^\mu = p_3^\mu + p_4^\mu ~(\mu = 0,1,2,3) \label{eq.17_14}
\end{eqnarray}
In the next several lectures, we will learn the above most basic
properties of the S-matrix and the scattering amplitudes by using
the first two expansions, $n=1$ and $2$, of the SM interactions.
Let me now simply list all the relevant free field expansions. For
simplicity, I give those expressions for non-Majorana particles, i.e.,
for those particles whose anti-particle is different from the particle.
Expressions for Majorana, or real particles are obtained simply by
replacing all b-operators by $a$-operators.
\begin{itemize}
\item Spin $s=0$:
\begin{eqnarray}
\Phi(x)
= \int \frac{d^3p}{(2E)(2\pi)^3} [ a({\vec p}) e^{-ipx} + b({\vec p})^\dgr e^{ipx} ]\label{eq.17_15}
\end{eqnarray}
\item Spin $s=1$ (massive):
\begin{eqnarray}
V^\mu(x)
= \int \frac{d^3p}{(2E)(2\pi)^3}
\sum_{h=\pm1,0}
[ a({\vec p},\lambda e^{-ipx} \eps^\mu({\vec p},h)
+ b({\vec p},\lambda)^\dgr e^{ipx} \eps^\mu({\vec p},h)^* ] \label{eq.17_16}
\end{eqnarray}
\item Spin $s=1/2$:
\begin{eqnarray}
\Psi(x) &=& \int \frac{d^3p}{(2E)(2\pi)^3}
\sum_{h=\pm1/2}
[a({\vec p},h) e^{-ipx} u({\vec p},h)
+ b({\vec p},h)^\dgr e^{ipx} v({\vec p},h) ] \label{eq.17_18a} \\
{\overline \Psi}(x)
&=& \int \frac{d^3p}{(2E)(2\pi)^3}
\sum_{h=\pm1/2}
[a({\vec p},\lambda)^\dgr e^{ipx} {\overline u}({\vec p},\lambda)
+ b({\vec p},\lambda) e^{-ipx} {\overline v}({\vec p},\lambda)] \label{eq.17_18b}
\end{eqnarray}
where I show in Eq.\ref{eq.17_18b} for Dirac conjugate spinors, where the difference in the Lorentz transformation properties of the two-component
$\psi_L$ and $\psi_R$ spinors in the Dirac four-spinor,
\begin{eqnarray}
\Psi(x) =
\begin{pmatrix}
\psi_L(x) \\ \psi_R(x)
\end{pmatrix} \label{eq.17_19}
\end{eqnarray}
are accounted for by taking the Dirac conjugates
\begin{eqnarray}
{\overline \Psi}(x) = \Psi(x)^\dgr \gamma^0
= ( \psi_L(x)^\dgr, \psi_R(x)^\dgr )
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
= ( \psi_R(x)^\dgr, \psi_L(x)^\dgr ) \label{eq.17_20}
\end{eqnarray}
for both the mass term
\begin{eqnarray}
m {\overline \Psi} \Psi = m (\psi_R^\dgr \psi_L + \psi_L^\dgr \psi_R) \label{eq.17_21}
\end{eqnarray}
and for the kinetic terms
\begin{eqnarray}
&& {\overline \Psi} \gamma^\mu P_L \Psi = \psi_L^\dgr \sigma_-^\mu \psi_L \label{eq.17_22a} \\
&& {\overline \Psi} \gamma^\mu P_R \Psi = \psi_R^\dgr \sigma_+^\mu \psi_R \label{eq.17_22b}
\end{eqnarray}
\end{itemize}
{\bf hw17-3}: Please refresh your memeory on Eq.\ref{eq.17_15} to Eqs.(\ref{eq.15_22a},\ref{eq.15_22b}).
If they all look deadly clear to you, please skip this homework.
With the above preparation, we are now ready to compute scattering
amplitudes ($S$-matrix elements) in the SM.
Our first example is the $S$-matrix elements for the process
\begin{eqnarray}
H \to \tau {\overline \tau} \label{eq.17_23}
\end{eqnarray}
since it seems to be the simplest possible transition amplitudes
which we can calculate, and since it is an interesting process.
We prepare the initial state, which is just a single Higgs boson with
momentum $p_H$:
\begin{eqnarray}
\ket{initial~state}= a^\dgr(p_H) \ket{0} \label{eq.17_24}
\end{eqnarray}
and also the final state, which has two particles,
\begin{eqnarray}
\ket{final~state}= a(p_\tau,h_\tau)^\dgr b(p_{\overline \tau},h_{\overline \tau})^\dgr \ket{0} \label{eq.17_25}
\end{eqnarray}
i.e., a $\tau$ lepton with momentum $p_\tau$, and helicity $h_\tau$, and an
anti-$\tau$ lepton (${\overline \tau}$) with momentum $p_{\overline \tau}$, and helicity $h_{\overline \tau}$.
The $S$-matrix element for this transition reads
\begin{eqnarray}
S_{fi}
&=& \bra{final~state} S \ket{initial~state}
= \bra{final~state} T e^{ i\int d^4x {\cal L}_{int}(x) } \ket{initial~state}\\
&=& \bra{0} b(p_{\overline \tau},h_{\overline \tau}) a(p_\tau,h_\tau)
T e^{ i\int d^4x {\cal L}_{int}(x) } a(p_H)^\dgr \ket{0} \label{eq.17_26}
\end{eqnarray}
Now, in the expansion of the $S$-matrix
\begin{eqnarray}
S = T e^{ i\int d^4x {\cal L}_{int}(x) }
= 1
+ i\int d^4x {\cal L}_{int}(x)
+ T \frac{1}{2!} (i\int d^4x {\cal L}_{int}(x))^2
+ \cdots \label{eq.17_27}
\end{eqnarray}
we notice the $0$'th term, $1$, does not have any matrix elements.
{\bf hw17-4}: Prove $\bra{final~state} 1 \ket{initial~state} = 0$ by using the
property of the creation and annihilation operators.
hint: The vacuum in perturbative QFT is defined by
\begin{eqnarray}
a\ket{0}=b\ket{0}=0,~~~or~\bra{0}a^\dgr = \bra{0}b^\dgr = 0,\label{eq.17_28}
\end{eqnarray}
for any particle or anti-particle operators.
We find that the 1'st term has a non-vanishing matrix elements because
${\cal L}_{int}(x)$ contains the term
\begin{eqnarray}
{\cal L}_{int}(x) = -\frac{m_\tau}{v} H(x) {\overline \Psi}_\tau(x) \Psi_\tau(x) + \cdots \label{eq.17_29}
\end{eqnarray}
None of the other terms in ${\cal L}_{int}(x)$, denoted by $+\cdots$ above, contribute
to the amplitudes at this order ($n=1$), because of the same reason in Eq.\ref{eq.17_28}.
{\bf hw17-5}: Go back to past homework, and find that the above Lagrangian
term for the $H-\tau-\tau$ interactions exists in ${\cal L}_{Yukawa}$. Please
check the sign and the magnitude of the coupling.
hint: All the Higgs boson interactions in the SM are obtained by
replacing the Higgs v.e.v., $v$, by $v + H(x)$, since the Higgs boson is
the quantum of the fluctuation of the Higgs field about the vacuum
along the direction where the potential has the minimum (the quantum of
the fluctuation along the directions where the potential is flat is
massless, and called Nambu-Goldstone boson). Because the massless
Goldstone bosons are absorbed by the gauge bosons to make them massive,
they do not appear as an observable state. The gauge in which those
un-observable states do not appear is called Unitary gauge. In the
Unitary gauge, all the Higgs boson interactions are obtained simply by
replacing the Higgs doublet fields by
\begin{eqnarray}
&&\phi =
\begin{pmatrix}
0 \\ (v+H(x))/\sqrt{2}
\end{pmatrix}\label{eq.17_30a}\\
&&\psi^c =
\begin{pmatrix}
(v+H(x))/\sqrt{2} \\ 0
\end{pmatrix}\label{eq.17_30b}
\end{eqnarray}
Since all the mass terms in the SM are proportional to this v.e.v., $v$,
this tells that all the Higgs boson interaction terms are obtained
from the mass terms, by the following replacements:
\begin{eqnarray}
&&m \to m ( 1 + H(x)/v ) ~~~ for~ all ~the ~Dirac ~fermion ~masses\label{eq.17_31a}\\
&& m^2\to m^2 ( 1 + H(x)/v )^2 ~~~for~ m_W, ~m_Z \label{eq.17_31b}\\
&& m \to m ( 1 + H(x)/v )^2 ~~~for ~Majorana ~neutrino ~mass\label{eq.17_31c}
\end{eqnarray}
It is only for the Higgs boson itself this rule doesn't work, since
the Higgs potential is
\begin{eqnarray}
&&{\cal L}_{Higgs~potential}
= -V_{Higgs~potential}
= -\frac{\lambda}{4} (\phi^\dagger \phi)^2 -\mu^2 (\phi^\dagger \phi)\\
&=& -\frac{\lambda}{4}(\frac{(v+H)^2}{2})^2 -\mu^2 \frac{(v+H)^2}{2}
= -\frac{\lambda}{16} (v+H)^4 -\frac{\mu^2}{2} (v+H)^2 \\
&=& -\frac{\lambda}{16}(v^4 + 4v^3 H +6v^2 H^2 +4v H^3 +H^4)
-\frac{\mu^2}{2} (v^2 + 2vH + H^2) \\
&=& -\frac{\lambda}{16} v^4 -\frac{\mu^2}{2} v^2
-(\frac{\lambda}{16} 4v^3 + \frac{\mu^2}{2} 2v) H
-(\frac{\lambda}{16} 6v^2 + \frac{\mu^2}{2}) H^2
-(\frac{\lambda}{16} 4v) H^3
-(\frac{\lambda}{16}) H^4 \label{eq.17_32}
\end{eqnarray}
The term proportional to $H$ should vanish (the potential minimum)
\begin{eqnarray}
&& \frac{\lambda}{4} v^2 + \mu^2 = 0 \label{eq.17_33a} \\
&& \mu^2 = -\frac{\lambda}{4} v^2 \label{eq.17_33b}
\end{eqnarray}
and hence the Higgs mass should be
\begin{eqnarray}
m_H^2 = \mu^2 + \frac{\lambda}{4} 3v^2
= \frac{\lambda}{4} (-v^2 + 3v^2)
= \frac{\lambda}{2} v^2 \label{eq.17_34}
\end{eqnarray}
The relevant terms for $H^3$ and $H^4$ couplings are hence
\begin{eqnarray}
{\cal L}_{Higgs~potential}
&=& -V_{Higgs~potential}
= -\frac{\lambda v^2}{4} H^2
-\frac{\lambda}{4} H^3
-\frac{\lambda}{16} H^4 \\
&=& -\frac{\lambda v^2}{2} \frac{H^2}{2}
-\frac{3 \lambda v}{2} \frac{H^3}{3!}
-\frac{3 \lambda }{2} \frac{H^4}{4!} \label{eq.17_35}
\end{eqnarray}
where I dropped the constant term in the potential.
{\bf hw17-6}: Please confirm the rule Eq.(\ref{eq.17_31a},\ref{eq.17_31b},\ref{eq.17_31c}), and also Eq.\ref{eq.17_35} for the SM
Higgs potential. Confirm that the rule Eq.\ref{eq.17_31b} does not give the correct $H^3$ and $H^4$ term in the potential.
Now, let us calculate the S-matrix elements Eq.\ref{eq.17_26}
\begin{eqnarray}
S_{fi}
&=& \bra{final~state} S \ket{initial~state}
= \bra{final~state} T e^{ i\int d^4x {\cal L}_{int}(x) } \ket{initial~state} \\
&=& \bra{0} b(p_{\overline \tau},h_{\overline \tau}) a(p_\tau,h_\tau) T e^{ i\int d^4x {\cal L}_{int}(x) } a(p_H)^\dgr \ket{0} \\
&=& \bra{0} b(p_{\overline \tau},h_{\overline \tau}) a(p_\tau,h_\tau) [1 + i\int d^4x {\cal L}_{int}(x) +\cdots] )a(p_H)^\dgr \ket{0} \label{eq.17_36}
\end{eqnarray}
with
\begin{eqnarray}
{\cal L}_{int} (x) = -\frac{m_\tau}{v} H(x) {\overline \Psi}_\tau(x) \Psi_\tau(x) \label{eq.17_37}
\end{eqnarray}
We find
\begin{eqnarray}
S_{fi}= -i\frac{m_\tau}{v} \int d^4 x
\bra{0} b(p_{\overline \tau},h_{\overline \tau}) a(p_\tau,h_\tau)
H(x) {\overline \Psi}_\tau(x) \Psi_\tau(x) a(p_H)^\dgr \ket{0} \label{eq.17_38}
\end{eqnarray}
Since we have free field expansions for all the three fields,
\begin{eqnarray}
H(x) &=& \int \frac{d^3p}{(2E)(2\pi)^3} [ a({\vec p}) e^{-ipx} + a(\vec p)^\dgr e^{ipx} ] \label{eq.17_39a} \\
\Psi(x) &=& \int \frac{d^3p}{(2E)(2\pi)^3}
\sum_{h=\pm1/2} [a({\vec p},h) e^{-ipx} u({\vec p},h)
+ b({\vec p},h)^\dgr e^{ipx} v({\vec p},h)] \label{eq.17_39b} \\
{\overline \Psi}(x) &=& \int \frac{d^3p}{(2E)(2\pi)^3} \sum_{h=\pm1/2}
{ a({\vec p},\lambda)^\dgr e^{ipx} {\overline u}({\vec p},\lambda)
+ b({\vec p},\lambda) e^{-ipx} {\overline v}({\vec p},\lambda) } \label{eq.17_39c}
\end{eqnarray}
we immediately find only the following term is non-vanishing:
\begin{eqnarray}
S_{fi} &=& -i\frac{m_\tau}{v} \int d^4 x
\bra{0} b(p_{\overline \tau},h_{\overline \tau}) a(p_\tau,h_\tau)
\int \frac{d^3p}{(2E)(2\pi)^3} a_H(p) e^{-ipx}
\nonumber \\&&\int \frac{d^3p'}{(2E')(2\pi)^3} \sum_{h'}
a_\tau(p',h')^\dgr e^{ip'x} {\overline u}(p',h')
\nonumber \\&& \int \frac{d^3p{''}}{(2E{''})(2\pi)^3} \sum_{h{''}}
b_{\overline \tau}(p{''},h{''})^\dgr e^{ip{''}x} v(p{''},h{''})
a(p_H)^\dgr \ket{0}
\end{eqnarray}
By using the commutation and anti-commutations among operators we find
\begin{eqnarray}
S_{fi}
&=& -i\frac{m_\tau}{v} \int d^4 x
\bra{0} e^{-ix p_H}
e^{ ix p_\tau} {\overline u}(p_\tau,h_\tau)
e^{ ix p_{\overline \tau}} v(p_{\overline \tau},h_{\overline \tau}) \ket{0} \\
&=&-i\frac{m_\tau}{v} \int d^4 x
e^{ix(p_\tau+p_{\overline \tau}-p_H)}
{\overline u}(p_\tau,h_\tau) v(p_{\overline \tau},h_{\overline \tau}) \bra{0}\ket{0} \\
&=& -i\frac{m_\tau}{v} (2\pi)^4 \delta^4( p_\tau+p_{\overline \tau}-p_H )
{\overline u}(p_\tau,h_\tau) v(p_{\overline \tau},h_{\overline \tau}) \label{eq.17_41}
\end{eqnarray}
As I will explain later, we usually express the amplitudes
as T (transition) matrix elements, wich is defined as
\begin{eqnarray}
&&\bra{f}S\ket{i}=\bra{f}(1+iT)\ket{i} \label{eq.17_42a}\\
&&S_{fi} = i T_{fi}\label{eq.17_42b}
\end{eqnarray}
We then have a general expression for $T_{fi}$
\begin{eqnarray}
T_{fi} = (2\pi)^4 \delta^4( p_f - p_i ) M_{fi} \label{eq.17_43}
\end{eqnarray}
where $p_i$ and $p_f$ are the total sum of initial and final state four
momenta. Summing up, the S-matrix elements are usually expressed as
\begin{eqnarray}
S_{fi} = i T_{fi}
= i (2\pi)^4 \delta^4( p_f - p_i ) M_{fi} \label{eq.17_44}
\end{eqnarray}
after factorizing out the common factor of $i$ and the four momentum
conservation delta functions. With this convention, our amplitudes
are simply:
\begin{eqnarray}
M(H(p_H) \to \tau(p_\tau,h_\tau) {\overline \tau}(p_{\overline \tau},h_{\overline \tau}))
= -\frac{m_\tau}{v} {\overline u}(p_\tau,h_\tau) v(p_{\overline \tau},h_{\overline \tau}) \label{eq.17_45}
\end{eqnarray}
{\bf hw17-7}: Please obtain Eq.\ref{eq.17_41} from Eq.\ref{eq.17_38}.
Before going on calculating various S-matrix elements (or scattering
amplitudes), let me explain why we introduce Transition matrix, in
addition to the S-matrix.
The T-matrix is related to the S-matrix symbolically as
\begin{eqnarray}
S = 1 + i T
\end{eqnarray}
The unitarity of the S matrix is then expressed as
\begin{eqnarray}
S^\dagger S = (1 + iT)^\dagger (1+iT)
= 1 -i(T^\dagger - T) + T^\dagger T
= 1 \label{eq.17_47}
\end{eqnarray}
or
\begin{eqnarray}
-i(T-T^\dagger) = T^\dagger T \label{eq.17_48}
\end{eqnarray}
This is the most useful expression of the Unitarity of the S-matrix.
{\bf hw17-8}: Derive Eq.\ref{eq.17_48} from Eq.\ref{eq.17_47}.
If we take the forward scattering ($\bra{final}= (\ket{initial})^\dagger$) matrix
element of Eq.\ref{eq.17_48},
\begin{eqnarray}
-i\bra{inital}(T-T^\dagger)\ket{inital} = \bra{inital}T^\dagger T\ket{inital} \label{eq.17_49}
\end{eqnarray}
The left-hand-side of Eq.\ref{eq.17_49} is simply
\begin{eqnarray}
-i\bra{inital}(T-T^\dagger)\ket{inital} = -i ( T_{ii} - (T_{ii})^* )
= 2 \Im(T_{ii}) \label{eq.17_50}
\end{eqnarray}
which is called the imaginary part of the forward scattering amplitudes.
For the right-hand-side of Eq.\ref{eq.17_49}, we insert the complete set of states
\begin{eqnarray}
1 = \sum_f \ket{f}\bra{f} \label{eq.17_51}
\end{eqnarray}
between $T^\dagger$ and $T$, where the summation is taken over all possible
final states and total integral over the whole phase space for each
final state. We therefore find
\begin{eqnarray}
2 \Im T_{ii} = \bra{i} T^\dagger \sum_f \ket{f}\bra{f} T \ket{i}
= \sum_f |T_{fi}|^2 \label{eq.17_52}
\end{eqnarray}
This is called the optical theorem, which states that the the imaginary
part of the forward scattering amplitude is proportional to the total
cross section of the process.
{\bf hw17-9}: Reproduce the optical theorem Eq.\ref{eq.17_52}.
I find it very useful to know that perturbative calculation of the
S-matrix elements gives $S_{fi}$, whereas the T-matrix elements are
related as $T_{fi} = -i S_{fi}$. Unitarity tells that the $T_{fi}$ are
real in the tree-level approximation where final state interactions
are neglected. When we calculate a two-point function, with the same
initial and the final states, the imaginary part of the T-matrix element
should be positive according to the optical theorem. I often used the
above facts to test my calculation, such as the number of i's in tree
level amplitudes, and the sign of loop functions.
Please always be aware that the perturbative expansion gives the
S-matrix elements, rather than the T-matrix elements. Because of this,
perturbative QFT computation of amplitudes gives $i$ times $T$ matrix
elements. It is useful to remember this fact, and express the
perturbatively calculated amplitudes as
\begin{eqnarray}
\bra{f} S \ket{i} = \bra{f} T e^{ i\int d^4x {\cal L}_{int}(x) } \ket{i} = S_{fi}
= i T_{fi}
= i (2\pi)^4 \delta^4(\sum p_f - \sum p_i) M_{fi} \label{eq.17_53}
\end{eqnarray}
and we expect that $T_{fi}$, and hence $M_{fi}$, should be real at the
tree-level.
Because the time-ordering of the S matrix should follow positive energy
oscillation, it should behave as
\begin{eqnarray}
S = T e^{ -i \int_{t=-\infty}^{\infty} dt {\cal H}_{int} }
= T e^{ i \int_{t=-\infty}^{\infty} dt {\cal L}_{int}(x) }
= T e^{ i \int d^4x {\cal L}_{int}(x) } \label{eq.17_54}
\end{eqnarray}
where ${\cal H}_{int} = -{\cal L}_{int}$ denotes the Hamiltonian after integration over
space. Therefore, the sign of the exponent should be positive.
I therefore choose the above sign conventions consistently.
That's all for hw17.\\
Best regards,\\
Kaoru
\end{document}