-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw20.tex
737 lines (546 loc) · 26.2 KB
/
hw20.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
\documentclass[12pt]{article}
\usepackage{amsmath,graphicx,color,epsfig,physics}
\usepackage{float}
\usepackage{subfigure}
\usepackage{slashed}
\usepackage{color}
\usepackage{multirow}
\usepackage{feynmp}
\textheight=9.5in \voffset=-1.0in \textwidth=6.5in \hoffset=-0.5in
\parskip=0pt
\def\del{{\partial}}
\def\dgr{\dagger}
\def\eps{\epsilon}
\def\lmd{\lambda}
\def\th{\theta}
\begin{document}
\begin{center}
{\large\bf HW20 for Advanced Particle Physics} \\
\end{center}
\vskip 0.2 in
Dear students,
Last week, I introduce perturbative QFT methods to compute transition
amplitudes for 1 > 2 (1 particle to 2 particles) processes, which
appear in the very first expansion of our S matrix operator
S = T e^{i \Int d^4x L_{int}(x)}
= 1 + i \Int d^4x L_{int}(x)} + ...
As examples, I plan to show the following three cases,
H > tau+ + tau- ( spin= 0 )
t > t + W^+ ( spin= 1 )
W^+ > l^+ + \nu_l ( spin= 1/2)
Although I gave detailed homework only for W decays, I may come
back to the other two processes if time allows.
This week, I proceed to compute transition matrix elements that are
obtained from the 2'nd expansion of the S matrix exponent,
T (1/2!) [i\Int d^4x L_\int(x)]^2
=
[i\Int d^4x1 L_\int(x1)] [i\Int d^4x2 L_\int(x2)] \Theta(x1^0-x2^0)
At this order, we have the time-ordering of the operators, and a
propagator appears. I show how Feynman introduced his causal
(Feynman) propagator by using the analyticity of the function in
the p^0 plane.
We examine two processes carefully,
A: \mu \to \numu e \nuebar
where the 3 body phase space is evaluated carefully, and
we compare its life-time with the prediction of the SM.
As a supplement, I mention the two processes:
A-1: \tau \to \nutau e \nuebar
A-2: n \to p e \nuebar
briefly. A-1 shows the scaling law
\Gamma(\tau \to \nutau e \nuebar) (m_\tau)^5
--------------------------------- = ----------
\Gamma(\mu \to \numu e \nuebar) (m_\mu)^5
A-2 is to show the importance of phase space suppression
due to the very small mass difference
m(n) - m(p) = 1.29MeV
which is not much larger than m(e)=0.51MeV.
B: e- e+ \to f fbar
Here, we introduce the definition of the scattering cross section,
unitarization of the Z-boson propagator (which gives the normalization
of the Z-boson decay width which is similar to the W width we calculated
in the last lecture), and again the d-functions for spin 1 particle
production and decay that govern the angular distributions.
If possible, I may try to cover the following two processes:
C: u dbar \to W^+ \gamma
which contains the WW\gamma coupling, and a single top quark production
by the W boson exchange
D: u b \to d t
followed by the top quark decay
E: t \to b l^+ \nu_l.
They are all very interesting processes, where you can learn a lot by
calculating the helicity amplitudes explicitly.
======================
A: mu -> numu e nuebar
======================
There are just two terms in L_\int(x) which contribute to this amplitude
in the lowest (n=2) order of the expansion:
01) L_\int(x)
= W^+_\mu(x) \nl(x)^\dgr \sigma_-^\mu (-g_L^{Wnl}) \lL(x)
+ W^-_\mu(x) \lL(x)^\dgr \sigma_-^\mu (-g_L^{Wln}) \nl(x)
= W^+_\mu(x) J_{Wnl}^\mu(x)
+ W^-_\mu(x) J_{Wln}^\mu(x)
where I used the generic notation of hw19 for the couplings. The first
term give the transition from the initial muon into \numu and (virtual)
W^- (l=\mu), whereas the second term gives the transition of this
(virtual) W^- into electron and \nuebar.
In the above paragraph, I used the expression which became standard
after Feynman proposed his Feynman's propagator (and all of us
accepted his method of calculating transition amplitudes), please note
at this moment that the first operator,
01a) W^+_\mu(x) \nl(x)^\dgr \sigma_-^\mu (-g_L^{Wnl}) \lL(x)
can annihilate W^+ and l^-, and create \nu\l at the spacetime point
x^\mu, whereas the second operator
01b) W^-_\mu(x) \lL(x)^\dgr \sigma_-^\mu (-g_L^{Wln}) \nl(x)
can create W^+, l^-, \nubar_l from the vacuum at x^\mu.
hw20-1: Please select (01) from our SM Lagrangian, and explain that no
other terms in the Lagrangian can contribute to the process A, in the
second order of perturbation theory.
Let us parametrize the helicity and momenta of all the external
particles as:
02) \mu(p,h) -> e(p1,-1/2) + \nuebar(p2,+/12) + \numu(p3,-1/2)
where h = +-1/2 gives the Jz eigenvalue of the polarized muon, and the
helicities of all the final state particles, e, nuebar, numu, are fixed
in the massless limit.
I neglect the electron mass
03) [m(e)/m(mu)]^2 = (0.51/106)^2 = (1/207)^2 = 2.3*10^{-5}
in this study. Note that the present measurement accuracy of the muon
life time, or that of the Fermi constant G_F is 2 times 10^{-5}, see
RPP, and hence the electron mass cannot be neglected in precision
physics.
The 4-momentum conservation gives
04a) p = p1 + p2 + p3
with
04b) p^2 = M^2 (M=m(\mu)), p1^2 = p2^2 = p3^2 = 0
The initial and final states are
05a) |i> = a^\dagger_{mu, p, h} |0>
05b) |f> = a^\dagger_{e, p1,-1/2}
b^\dagger_{\nuebar,p2,+1/2}
a^\dagger_{\numu, p3,-1/2} |0>
05c) <f| = <0| a_{\numu, p3,-1/2}
b_{\nuebar,p2,+1/2}
a_{e, p1,-1/2}
The leading order amplitude is
06) iT_{fi}
= <f| S |i>
= <f| T e^{i\Int d^4x L_int(x)} |i>
= <f| (1/2!) T (i\Int d^4x L_int(x))^2 |i> + ...
= <f| T [i\Int d^4x W^-_\mu(x) J_{Wln}^\mu(x)]
[i\Int d^4y W^+_\nu(y) J_{Wnl}^\nu(y)] |i> + ...
where the factor of 1/2 has been eliminated by retaining only the
J_{Wln} term in L_\int(x), and J_{Wnl} term in L_\int(y).
hw20-2: Please show that (06) gives the correct normalization by using
the definition of the time ordering:
07a) T A(x) B(y) = A(x) B(y) \Theta(x^0-y^0)
+ B(y) A(x) \Theta(y^0-x^0)
when A(x) and B(x) commutes,
07b) T A(x) B(y) = A(x) B(y) \Theta(x^0-y^0)
- B(y) A(x) \Theta(y^0-x^0)
when A(c) and B(x) anti-commutes. Because all terms in L_{int}(x) are
Lorentz scalar, only the commuting case (07a) appears in the expansion
of our S matrix.
hint: Please note that the factor of 1/2! is compensated by the fact
that two contributing terms in L_{int}(x), say, A(x) and B(x), are
needed to give non-zero amplitudes, where both TA(x)B(y) and TB(x)A(y)
contributes with the same way. Schematically, you should prove
07c) T L_int(x) * L_int(y)
= T (A(x) + B(x)) * (A(y) + B(y))
= (T A(x)*B(y)) + (T B(x)*A(y))
= 2 (T A(x)*B(y)).
Since this is the first time we encounter the t-ordered product of
field operators, let us show the free field expansions of all the
fields again:
08a) W^-_\mu(x)
= \Sum_h \Int d^3q1/(2pi)^3/2E(q1) \Sum_{h1}
{ a_{W^-:q1,h1} \eps_\mu(q1,h1) e^{-iq1x}
+ b_{W^+:q1,h1}^\dagger \eps_\mu(q1,h1)^* e^{ iq1x} }_{q1^0=E(q1)} }
08b) \Psi(x)_{l=\mu}
= \Sum_h \Int d^3k/(2pi)^3/2E(k) \Sum_{h'}
{ a_{mu:k,h'} u(k,h') e^{-ikx}
+ b_{mu:k,h'}^\dagger v(k,h') e^{+ikx} }_{k^0=E(k)} }
08c) \Psibar(x)_{n=\numu}
= \Sum_h \Int d^3k3/(2pi)^3/2E(k3)
{ a_{\numu:k3}^\dagger ubar(k1,-1/2) e^{+ik3x}
+ b_{\numu:k3} vbar(k1,+1/2) e^{-ik3x} }_{k3^0=E(k3)} }
in L_\int(x), and
08d) W^+_\mu(y)
= \Sum_h \Int d^3q2/(2pi)^3/2E(q2) \Sum_{h2}
{ b_{W^+:q2,h2} \eps_\mu(q2,h2) e^{-iq2y}
+ a_{W^-:q2,h2}^\dagger \eps_\mu(q2,h2)^* e^{ iq2y} }_{q2^0=E(q2)} }
08e) \Psibar(y)_{l=e}
= \Sum_h \Int d^3k1/(2pi)^3/2E(k1) \Sum_{h1}
{ a_{e:k1,h1}^\dagger ubar(k1,h1) e^{+ik1y}
+ b_{e:k1,h1} vbar(k1,h1) e^{-ik1y} }_{k1^0=E(k1)} }
08f) \Psi(y)_{n=\nue}
= \Sum_h \Int d^3k2/(2pi)^3/2E(k2)
{ a_{\nue:k2} u(k,-1/2) e^{-ik2y}
+ b_{\nue:k2}^\dagger v(k,+1/2) e^{+ik2y} }_{k2^0=E(k2)} }
in L_\int(y). Here, I used Dirac fermion notation, in order to avoid
giving L and R indices for the field operators and u and v spinors.
Please note that the Dirac conjugates simply gives complex conjugates
(^\dgr) for uL, uR, vL, vR spinors.
Now, by making use of the anti-commutators of the fermion operators,
09a) {a_{mu:k,h'},a^\dg_{mu:p,h}}=(2pi)^3 2E(k)\delta^3(p-k) \d_{h,h'}
09b) {a_{e:p1,-1/2},a^\dg_{e:k1}}=(2pi)^3 2E(k1)\delta^3(p1-k1)
09c) {b_{nue:p2,+1/2},b^\dg_{nue:k2}}=(2pi)^3 2E(k2)\delta^3(p2-k2)
09d) {a_{num:p3,-1/2},a^\dg_{num:k3}}=(2pi)^3 2E(k3)\delta^3(p3-k3)
the amplitude (07) can be immediately reduced to
10) iT_{fi}
= <f| (1/2!) T (i\Int d^4x L_int(x))^2 |i> + ...
= <f| T [i\Int d^4x W^-_\mu(x) J_{Wln}^\mu(x)]
[i\Int d^4y W^+_\nu(y) J_{Wnl}^\nu(y)] |i> + ...
= \Int d^4x \Int d^4y
<0| T W^-_\mu(x) W^+_\nu(y) |0>
\ubar(e:p1) \gamma^\mu (-ig_L^{Wln}) P_L v(nue:p2) e^{-ix(-p1-p2)}
\ubar(num:p3) \gamma^\nu (-ig_L^{Wnl}) P_L u(mu:p,h) e^{-iy(p-p3)}
hw20-3: Derive (10). This is just a review of our last homework.
Please note that the factor of i has been included in each coupling
factor, in accordance with the rule (the Feynman rule) we introduced
in the last homework.
In eq.(10), we have a new term, the propagator, which connects the
interaction at a spacetime point x^\mu and the other interaction which
occurs at another spacetime point y^\mu. The time ordering tells
11) <0| T W^-_\mu(x) W^+_\nu(y) |0>
= \Theta(x^0-y^0) <0| W^-_\mu(x) W^+_\nu(y) |0>
+ \Theta(y^0-x^0) <0| W^+_\nu(y) W^-_\mu(x) |0>
which ensures that the time flows from the right (the initial state at
t=-\infty) to the left (the final state at t=+\infty).
The relative sign between the two terms in (11) is plus, because the
W field is a bosonic operator.
Now, let us evaluate the propagator (11) by using the free field
expansions, (08a) and (08b). The only possible surviving terms are:
12a) <0| a_{W^-:q1,h1} a_{W^-:q2,h2}^\dagger |0>
= [a_{W^-:q1,h1}, a_{W^-:q2,h2}^\dagger]
= (2pi)^3 (2E(q2) \delta^3(q1-q2) \delta_{h1,h2}
12b) <0| b_{W^+:q2,h2} b_{W^+:q1,h1}^\dagger |0>
= [b_{W^+:q2,h2}, b_{W^+:q1,h1}^\dagger]
= (2pi)^3 (2E(q2) \delta^3(q1-q2) \delta_{h1,h2}
hw20-4: Show that only the term (12b) survives in the first term of (11),
whereas only the term (12a) survives in the second term of (11).
Let us start from the first term in eq.(11)
13) \Theta(x^0-y^0) <0| W^-_\mu(x) W^+_\nu(y) |0>
= \Theta(x^0-y^0) <0| W^-_\mu(x) W^+_\nu(y) |0>
= \Theta(x^0-y^0)
\Int d^3q1/(2pi)^32E(q1) e^{-iq1(x-y)}_{q1^0=E(q1)}
\Sum_{h1} \eps_\mu(q1,h1) \eps_\nu(q1,h1)^*
= \Theta(x^0-y^0)
\Int d^3q1/2E(q1) e^{-iq1(x-y)}_{q1^0=E(q1)}
(-g_{\mu\nu} + q1_\mu q1_\nu/m_W^2)
hw20-5: Derive (13), except for the last part, which is explained below.
The identity
14) \Sum_{h=+-1,0} \eps_\mu(q,h) \eps_\nu(q,h)^*
= (-g_{\mu\nu} + q_\mu q_\nu/m_W^2)
has been shown in previous homework when q^2=m_W^2 (on-shell). When
q^2 \neq m_W^2 (off-shell), the use of the polarization sum (14) is
called `Unitary gauge'. We can show that the Unitary gauge propagator
can reproduce the spin=0 component of off-shell weak bosons in the
tree level (such as the virtual W contribution to \pi^\pm and K^\pm
decays into muon and muon-neutrino).
In order to understand the reason why eq.(14) gives a consistent
description of the sum of off-shell vector boson wave functions,
you need to study quantization of gauge bosons in spontaneously
broken theories.
Now, what Feynman showed is that the remaining part of the propagator
can be expressed simply as (I denote q1 as q below)
15) \Theta(x^0-y^0)
d^3 q
\Int -------------- e^{-iq(x-y)}_{q^0=E(q)}
(2pi)^3 2E(q)
=
\Theta(x^0-y^0)
d^4 q i
\int ------------ --------------- e^{-iq(x-y)}
(2pi)^4 q^2 - M^2 +i0
It is relatively easy to show the upper expression (which we obtained
from the commutation relations) from the lower expression, which is
a part of the Feynman's propagator.
We first note that
16) q^2 - M^2 = (q^0)^2 - |qvec|^2 - M^2
= (q^0)^2 - E(qvec)^2
= [(q^0) + E(qvec)] [(q^0) - E(qvec)]
and hence the the function
16') 1/(q^2-M^2)
has two poles in the complex q^0 plane. Feynman's +i0 prescription,
moves the pole from the real q^0 axis to the complex plane,
1 1
17) --------------- = ------------------------
q^2 - M^2 + i0 (q^0)^2 - E(qvec)^2 + i0
1
= ------------------------
(q^0 + E)(q^0 - E) + i0
1
= --------------------------
(q^0 + E -i0)(q^0 - E +i0)
since E=E(qvec)>0. Now, the region of the q^0 integral in the d^4 q is
18) \Int_{-\infty}^{+\infty d q^0
we want to close this q^0 integration contour such that the contribution
from the far distance |q^0| \to \infty is regular, and the q^0 = E pole
is inside. Because
19) (x^0-y^0) > 0
due to the Theta function, the exponential function
20) e^{-i(q^0)(x^0-y^0)}
is regular in the lower (negative imaginary part) half plane. We can
close the contour by starting from -\infty in the real q^0 axis, move
to +\infty along the real axis, then make a large half circle in the
negative imaginary plane, and goes back to the original -\infty on the
real axis. This is a counter-clockwise circle (which gives a negative
sign when applying the residue theorem). Now, the only pole which
exists inside this contour is the one at
21) q^0 = E-i0
The residue theorem tells
22) \Int_{clockwise} dz f(z) = 2\pi i c_{-1}
and hence
23) \Int_{counter-clockwise} dz f(z) = 2\pi (-i) c_{-1}
Here c_n is the n'th pole in the expansion
24) f(z) = \Sum_{n=all integers} c_n (z-z0)^n
By applying the residue theorem (23), we find
25) 1
\Int_{counter-clockwise} dq^0 --------------------------
(q^0 + E -i0)(q^0 - E +i0)
1
= \Int_{counter-clockwise} dq^0 ------------------
2E (q^0 - E +i0)
= 2\pi (-i)/(2E)
Inserting this into the bottom expression of (15) gives the starting
expression of (15).
hw20-6: Please confirm the above proof by yourself, and show that
exactly the same propagator is found for the y^0-x^0 > 0 case of
eq.(11):
26) \Theta(y^0-x^0) <0| W^+_\nu(y) W^-_\mu(x) |0>
= \Theta(y^0-x^0)
\Int d^3q1/(2pi)^32E(q1) e^{-iq1(y-x)}_{q1^0=E(q1)}
\Sum_{h1} \eps_\nu(q1,h1) \eps_\mu(q1,h1)^*
= \Theta(y^0-x^0)
\Int d^3q1/2E(q1) e^{-iq1(y-x)}_{q1^0=E(q1)}
(-g_{\mu\nu} + q1_\mu q1_\nu/m_W^2)
where the anti-particle (W^+ in our case) is produced at x and
annihilates at y. Since the only difference is the exchange of x
and y everywhere, we find, instead of (15)
27) \Theta(y^0-x^0)
d^3 q
\Int -------------- e^{-iq(y-x)}_{q^0=E(q)}
(2pi)^3 2E(q)
=
\Theta(y^0-x^0)
d^4 q i
\Int ------------ --------------- e^{-iq(y-x)}
(2pi)^4 q^2 - M^2 +i0
We can now find the whole expression for the propagator (11):
28) <0| T W^-_\mu(x) W^+_\nu(y) |0>
= \Theta(x^0-y^0) <0| W^-_\mu(x) W^+_\nu(y) |0>
+ \Theta(y^0-x^0) <0| W^+_\nu(y) W^-_\mu(x) |0>
d^4 q i q_\mu q_\nu
= \Int ------- --------------- (-g_{\mu\nu} + -------------)
(2pi)^4 q^2 - M^2 + i0 M^2
\times { \Theta(x^0-y^0) e^{-iq(x-y)
+ \Theta(y^0-x^0) e^{-iq(y-x) }
Inserting (28) into our amplitude (10), we find
29) iT_{fi}
= <f| (1/2!) T (i\Int d^4x L_int(x))^2 |i> + ...
= <f| T [i\Int d^4x W^-_\mu(x) J_{Wln}^\mu(x)]
[i\Int d^4y W^+_\nu(y) J_{Wnl}^\nu(y)] |i> + ...
= \Int d^4x \Int d^4y
\ubar(e:p1) \gamma^\mu (-ig_L^{Wln}) P_L v(nue:p2) e^{-ix(-p1-p2)}
\ubar(num:p3) \gamma^\nu (-ig_L^{Wnl}) P_L u(mu:p,h) e^{-iy(p-p3)}
{ \Theta(x^0-y^0) e^{-iq(x-y) + \Theta(y^0-x^0) e^{-iq(y-x) }
d^4 q i q_\mu q_\nu
\Int ------- --------------- (-g_{\mu\nu} + -------------)
(2pi)^4 q^2 - M^2 + i0 M^2
= \ubar(e:p1) \gamma^\mu (-ig_L^{Wln}) P_L v(nue:p2)
\ubar(num:p3) \gamma^\nu (-ig_L^{Wnl}) P_L u(mu:p,h)
{ \Theta(x^0-y^0) (2pi)^8 \delta^4(q-p1-p2) \delta^4(p-q3-q)
+ \Theta(y^0-x^0) (2pi)^8 \delta^4(q+p1+p2) \delta^4(p-p3+q) }
d^4 q i q_\mu q_\nu
\Int ------- --------------- (-g_{\mu\nu} + -------------)
(2pi)^4 q^2 - M^2 + i0 M^2
= \ubar(e:p1) \gamma^\mu (-ig_L^{Wln}) P_L v(nue:p2)
\ubar(num:p3) \gamma^\nu (-ig_L^{Wnl}) P_L u(mu:p,h)
{ \Theta(x^0-y^0) (2pi)^4 \delta^4(p-p3-p1-p2)
+ \Theta(y^0-x^0) (2pi)^4 \delta^4(-p+p3+p1+p2) }
i (p1+p2)_\mu (p1+p2)_\nu
-------------------- (-g_{\mu\nu} + -----------------------)
(p1+p2)^2 - M^2 + i0 M^2
= (2pi)^4 \delta^4(p-p1-p2-p3)
\ubar(e:p1) \gamma^\mu (-ig_L^{Wln}) P_L v(nue:p2)
\ubar(num:p3) \gamma^\nu (-ig_L^{Wnl}) P_L u(mu:p,h)
i (p1+p2)_\mu (p1+p2)_\nu
-------------------- (-g_{\mu\nu} + -----------------------)
(p1+p2)^2 - M^2 + i0 M^2
since
30) \Theta(x^0-y^0) + \Theta(y^0-x^0) = 1.
hw20-7: Please follow my long derivation of eq.(29).
It is indeed amazing that the contributions of the W^- propagation and
W^+ propagation sum up to the above extremely simple formula.
Let me try to follow the time-ordered perturbation theory calculation
for the above example.
When x^0>y^0, the term L_int(y) in eq.(06) annihilates \mu, and creates
\nu_\mu and W^- at the spacetime point y^mu, and then L_int(x)
annihilates W^-, creates e and \nubar_e at the spacetime point x^\mu.
The process may be expressed as (the time flows from left to right):
<-- <-- <-- <-- <-- <-- <-- <-- time <-- <-- <-- <-- <-- <-- <-- <--
\nu_\mu <----------------------------------------- y <--------- \mu
/ W^-
/ is created
/ at y^\mu
/
/
e <------------------------- x W^- is annihilated
/ at x^\mu
/
/
/
\nubar_e <--------- /
The propagation of W^- from y^\mu to x^\mu is shown.
Now, when y^0 > x^0, the ordering of the two operators change, and
the process can be depicted as
<-- <-- <-- <-- <-- <-- <-- <-- time <-- <-- <-- <-- <-- <-- <-- <--
\nu_\mu <--------- y <----------------------------------------- \mu
- W^+ is annihilated
- at y^\mu
-
-
-
e <---------------------------- x W^+ is created
/ at x^\mu
/
/
/
\nubar_e <--------- /
The propagation of W^+ from x^\mu to y^\mu is shown.
Therefore the S-matrix elements are the sum of the amplitudes depicted
by the above two plots: One where W^- is created first at y^\mu by
annihilating \mu and creating \nu_\mu, and this W^- is annihilated
at a later time at x^\mu, creating e and \nubar_e. The other one is
when W^+ is created with e and \nubar_e from the vacuum at x^\mu,
and at a later time, W^+ is annihilated at y^\mu, where \mu is also
annihilated and \nu_\mu is created.
Before Feynman, we calculated the above two contributions separately,
and their sum is the transition amplitudes. Feynman showed that the
sum of the above two contributions can be expressed by a single
amplitudes with Feynman's propagator (I use a scalar boson propagator
to avoid the polarization sum term):
31) <0| T \Phi(x) \Phi^*(y) |0>
= \Theta(x^0-y^0) <0| \Phi(x) \Phi^*(y) |0>
+ \Theta(y^0-x^0) <0| \Phi^*(y) \Phi(x) |0>
=
d^4 q i
\Theta(x^0-y^0) \int ------- ------------- e^{-iq(x-y)}
(2pi)^4 q^2 - M^2 +i0
+
d^4 p i
\Theta(y^0-x^0) \int ------- ------------- e^{-ip(y-x)}
(2pi)^4 p^2 - M^2 +i0
=
d^4 q i
\Theta(x^0-y^0) \int ------- ------------- e^{-iq(x-y)}
(2pi)^4 q^2 - M^2 +i0
+
d^4 q i
\Theta(y^0-x^0) \int ------- -------------- e^{-iq(x-y)}
(2pi)^4 q^2 - M^2 +i0
=
d^4 q i
------- ------------- e^{-iq(x-y)}
(2pi)^4 q^2 - M^2 +i0
In the next-to-the-last step above, I set p=-q. Amazingly, the two
contributions, the particle propagation from y^\mu to x^\mu when
x^0>y^0, and the anti-particle propagation from x^\mu to y^\mu when
y^0>x^0, sum up to a very simple term which is now called Feynman.
Feynman's discovery allows us to forget about the time-ordering of
the operators in the evaluation of the S matrix elements, because
the only operator products whose v.e.v. is non-vanishing are expressed
as bi-linear combination of the same field operator, which can all be
expressed as above, except for the polarization sum factors which do
not depend on the operator ordering. By using the Feynman propagator,
the two `processes' depicted above can be expressed by one `diagram'
<-- <-- <-- <-- <-- <-- <-- <-- time <-- <-- <-- <-- <-- <-- <-- <--
\nu_\mu <----------------------------------------- y <--------- \mu
/
/
/ Feynman's propagator
/ of W^\pm
/
e <------------------------- x
/
/
/
/
\nubar_e <--------- /
where the initial state at t=-\infty and the final state at t=+\infty
are still ordered, but the time-ordering between x^\mu and y^\mu no
more exists. The Feynman's propagator above gives the sum of
W^- is produced at y^\mu and annihilated at x^\mu when x^0>y^0
and
W^+ is produced at x^\mu and annihilated at y^\mu when y^0>x^0
Therefore, when we draw Feynman diagrams, there is no time-ordering
between the interaction points. More accurately, in the n-th order,
the total sum of all the possible time-ordering among n-interaction
points (n! cases) can be expressed by just one diagram !!!
No wonder how everybody was delighted by Feynman's discovery, and
shortly after his work, everybody started calling our transition
matrix elements as Feynman amplitudes, and the corresponding
plots as above as Feynman diagrams.
*****
Now with our standard amplitude convention,
32)
iT_{fi} = (2pi)^4 \delta^4(\Sum{p_i}-\Sum{p_f}) iM_{fi}
the Feynman amplitudes for the process (02) reads
33) iM_{fi}
= \ubar(e:p1) \gamma^\mu (-ig_L^{Wln}) P_L v(nue:p2)
\ubar(num:p3) \gamma^\nu (-ig_L^{Wnl}) P_L u(mu:p,h)
i (p1+p2)_\mu (p1+p2)_\nu
-------------------- (-g_{\mu\nu} + -----------------------)
(p1+p2)^2 - M^2 + i0 M^2
= (-ig_L^{Wln}) uL(e:p1)^\dagger \sigma_-^\mu vL(nue:p2)
(-ig_L^{Wnl}) uL(num:p3)^\dagger \sigma_-^\nu uL(mu:p,h)
i (p1+p2)_\mu (p1+p2)_\nu
-------------------- (-g_{\mu\nu} + -----------------------)
(p1+p2)^2 - M^2 + i0 M^2
We call the expression (33) as the Feynman amplitude, which follows
from the Feynman rules. As expected, the factor of i cancel (it is
important to note that Feynman's propagator has a factor of i, coming
from the residue theorem). After removing the common factor of i,
we find
34) M_{fi}
= -(g_L^{Wln} g_L^{Wnl})
uL(e:p1)^\dagger \sigma_-^\mu vL(nue:p2)
uL(num:p3)^\dagger \sigma_-^\nu uL(mu:p,h)
1 (p1+p2)_\mu (p1+p2)_\nu
-------------------- (-g_{\mu\nu} + -----------------------)
(p1+p2)^2 - M^2 + i0 M^2
which is usually the starting point of our amplitude calculation.
hw20-8: Obtain (34) directly from the `Feynman rule'.
Let us make a few simplification. Since we do not distinguish the
three neutrino mass eigenstates in this measurements (neutrinos in
the final states are measured only through their missing energy-momenta,
whose accuracy cannot distinguish tiny mass-squared differences of
the order of (0.1eV)^2), we can ignore the MNS mixing terms.
35) g_L^{Wln} = g_L^{Wnl} = g_W/\rt2
Next, since we ignore the electron mass, the second term in the W boson
polarization vector sum do not contribute:
36)
uL(e:p1)^\dagger \sigma_-^\mu vL(nue:p2) (p1+p2)_\mu = 0.
hw20-9: Show (36) by using the Dirac equations.
Third, since
37) (p1+p2)^2 < m_\mu^2 << M^2 (M=m_W)
the on-shell pole of the Feynman propagator can never be reached.
Therefore +i0 can be set to zero.
After these simplification, the amplitude reads
38) M_{fi}
= (g_W/\rt2)^2/[(p1+p2)^2 - M^2]
uL(e:p1)^\dagger \sigma_-^\mu vL(nue:p2)
uL(num:p3)^\dagger \sigma_-_\mu uL(mu:p,h)
We can further drop the (p1+p2)^2 piece in the W propagator because
39) (p1+p2)^2/M^2 < (m_\mu/m_W)^2 = (0.106/80.4)^2 = 2*10^{-6}
which is smaller than the experimental error of the muon life-time.
40) M_{fi}
= -g_W^2/(2m_W^2)
uL(e:p1)^\dagger \sigma_-^\mu vL(nue:p2)
uL(num:p3)^\dagger \sigma_-_\mu uL(mu:p,h)
We can now calculate the above amplitudes, and obtain the muon life
time by integrating their absolute value square's over the three body
phase space.
*****
That's all for hw20.
Best regards,
Kaoru
\end{document}