-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw21.tex
810 lines (578 loc) · 28.3 KB
/
hw21.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
\documentclass[12pt]{article}
\usepackage{amsmath,graphicx,color,epsfig,physics}
\usepackage{float}
\usepackage{subfigure}
\usepackage{slashed}
\usepackage{color}
\usepackage{multirow}
\usepackage{feynmp}
\textheight=9.5in \voffset=-1.0in \textwidth=6.5in \hoffset=-0.5in
\parskip=0pt
\def\del{{\partial}}
\def\dgr{\dagger}
\def\eps{\epsilon}
\def\lmd{\lambda}
\def\th{\theta}
\begin{document}
\begin{center}
{\large\bf HW21 for Advanced Particle Physics} \\
\end{center}
\vskip 0.2 in
Dear students,
Following the last homework, I plan to cover the following subject
in this homework.
A: \mu \to \numu e \nuebar
where the 3 body phase space is evaluated carefully, and
we compare its life-time with the prediction of the SM.
As a supplement, I mention the two processes:
A-1: \tau \to \nutau e \nuebar
A-2: n \to p e \nuebar
briefly. A-1 shows the scaling law
\Gamma(\tau \to \nutau e \nuebar) (m_\tau)^5
--------------------------------- = ----------
\Gamma(\mu \to \numu e \nuebar) (m_\mu)^5
A-2 is to show the importance of phase space suppression
due to the very small mass difference
m(n) - m(p) = 1.29MeV
which is not much larger than m(e)=0.51MeV.
=======================================================
A: mu -> numu e nuebar (continued from eq.(40) in hw20)
=======================================================
40) M_{fi} = -g_W^2/(2m_W^2)
uL(e:p1)^\dagger \sigma_-^\mu vL(nue:p2)
uL(num:p3)^\dagger \sigma_-_\mu uL(mu:p,h)
In order to evaluate the above amplitudes, we should first fix the
final state momenta,
41) p = p1 + p2 + p3
in the muon rest frame,
42) p^\mu = (m_\mu, 0, 0, 0)
Let us start with the definition of n-body phase space
43) dPSn(p=k1+k2+k3+...+kn) = (2pi)^4 \delta^4(p-k1-k2-k3-...-kn)
\Pi_{j=1}^{j=n} [d^3 kj/2Ej/(2pi)^3]
The 3-body phase space (n=3) reads
44) dPS3(p=k1+k2+k3) = (2pi)^4 \delta^4(p-k1-k2-k3)
\Pi_{j=1}^{j=3} [d^3 kj/2Ej/(2pi)^3]
Let us first show that the 3-body phase space can be expressed as a
convolution of two 2-body phase space. The following identity
45) 1 = \Int d^4 k23 \delta^4(k23 -k2 -k3)
\Int ds \delta((k23)^2-s)
= \Int d^3 k23 \delta^4(k23 -k2 -k3)
\Int d(k23^0)
\Int ds \delta((k23-0)^2-(E23)^2)
= \Int d^3 k23 \delta^4(k23 -k2 -k3)
\Int ds
\Int d(k23^0) \delta((k23-0)^2-(E23)^2)
= \Int d^3 k23 \delta^4(k23 -k2 -k3)
\Int ds /(2E23)
= \Int ds
\Int d^3 k23/(2E23)
\delta^4(k23 -k2 -k3)
= \Int ds/(2pi)
\Int d^3 k23/(2E23)/(2pi)^3
(2pi)^4 \delta^4(k23 -k2 -k3)
is useful. In the above, E23 is the energy
46) E23 = \sqrt{ s + (k23^1)^2 + (k23^2)^2 + (k23^3)^2 }
of the k23=k2+k3 system when its invariant mass-squared is s.
hw21-1: Verify eqs.(45) and derive (48), (50).
By inserting (45) into the definition of PS3 (44) we find
47) dPS3(p=k1+k2+k3)
= (2pi)^4 \delta^4(p-k1-k23) d^3 k23/(2E23)/(2pi)^3 d^3 k1/(2E1)/(2pi)^3
d(s23)/(2pi)
(2pi)^4 \delta^4(k23-k2-k3) d^3 k2/(2E2)/(2pi)^3 d^3 k3/(2E3)/(2pi)^3
which can be expressed as
48) dPS3(p=k1+k2+k3) = dPS2(p=k1+k23) d(s23)/(2pi) dPS2(k23=k2+k3)
in terms of the 2-body phase space dPS2 factors.
Here, I denote s=s23 as the invariant mass-squared of the k2+k3 system,
so that we can easily generalize eq.(48) to the n-body phase space
49) dPSn(p=k1+k2+k3+...+kn)
= dPS2(p=k1+k_{23...n}) ds_{23...n}/(2pi)
dPS_{n-1}(k_{23...n}=k2+k3+...+kn)
= dPS2(p=k1+k_{23...n}) ds_{23...n}/(2pi)
dPS2(k_{23...n}=k2+k_{3...n}) ds_{3...n}/(2pi)
...
dPS2(k_{n-1,n}=k_{n-1}+kn)
By using the above formula, we can obtain the phase space of arbitrary
number of particles by using the 2-body phase space. The integration
region of the invariant masses is simply
50) (m2+m3)^2 < s23 < (\sqrt{s}-m1)^2
for the 3-body phase space case. Generalization to the n-body phase
space case is straightforward:
51) (m2+m3+...+mn)^2 < s_{23...n} < (\sqrt{s}-m1)^2
(m3+...+mn)^2 < s_{3...n} < (\sqrt{s_{23....n}}-m2)^2
...
(m_{n-1}+mn)^2 < s_{n-1,n} < (\sqrt{s_{n-2,n-1,n}-m_{n-2})^2
If all the particles are massless, the integration region is simply
52) 0 < s_{n-1,n} < s_{n-2,n-1,n} < s_{n-3,...n}
< ... < s_{23...n} < s
Please note the virtual mass ordering of the n-body phase space.
The first MC parton shower (Pythia by Torbjoern Shoestrand) made
use of this virtual mass ordering of the phase space.
The total n-body phase space of the massless particles is simply
53) PSn = (1/8pi) [(1/8pi)(1/2pi)]^{n-2}
\Int_0^s ds_{23...n} (1-s_{23...n}/s)
\Int_0^s_{23...n} ds_{3...n} (1-s_{3...n}/s_{23...n})
...
\Int_0^s_{n-2,n-1,n} ds_{n-1,n} (1-s_{n-1,n}/s_{n-2,n-1,n})
= (1/8pi) (1/16pi^2)^{n-2}
\Int_0^s ds_{23...n} (1-s_{23...n}/s)
...
\Int_0^s_{n-3...n} ds_{n-2...n} (1-s_{n-2...n}/s_{n-3...n})
s_{n-2,n-1,n} (1/2)
= (1/8pi) (1/16pi^2)^{n-2}
\Int_0^s ds_{23...n} (1-s_{23...n}/s)
...
\Int_0^s_{n-4...n} ds_{n-3...n} (1-s_{n-3...n}/s_{n-4...n})
(s_{n-3...n})^2 \Int_0^1 dx x(1-x) (1/2)
= (1/8pi) (1/16pi^2)^{n-2}
\Int_0^s ds_{23...n} (1-s_{23...n}/s)
...
\Int_0^s_{n-5...n} ds_{n-4...n} (1-s_{n-4...n}/s_{n-5...n})
(s_{n-4...n})^3 \Int_0^1 dx x^2(1-x) (1/6) (1/2)
= (1/8pi) (1/16pi^2)^{n-2} s^{n-2}
x 1/(1*2) * 1/(2*3) * 1/(3*4) *** 1/((n-2)*(n-1))
54) PS2 = 1/8pi
PS3 = 1/8pi (1/4pi)^2 s (1/2)
PS4 = 1/8pi (1/4pi)^4 s^2 (1/2) (1/6)
PS5 = 1/8pi (1/4pi)^6 s^3 (1/2) (1/6) (1/12)
PS6 = 1/8pi (1/4pi)^8 s^4 (1/2) (1/6) (1/12) (1/20)
55) PSn = 1/8pi (s/16pi^2)^{n-2} 1/[(n-1)!(n-2)!] (n>=2)
hw21-2: Show (54), if possible (55).
I calculated the total n-body massless phase space (55) just for fun.
I have no idea if it is OK, even though it is trivial to test it
against numerical calculation. Would you please check it ?
Since the above phase space for only massless particles is the
largest possible one, the overall factor of
56) (2pi) (1/16pi^2)^{n-1}/(n-1)!/(n-2)! (n>=1)
shows the suppression factor for multiple body phase space.
In our convention of using Lorentz invariant S-matrix elements
and the Lorentz invariant phase space volume, the transition
matrix elements for 1 or 2 to n particles have mass dimension
of s^{-(n-2)/2}, and hence the factor
57) \Int |M(1 or 2 > n particles)|^2 dPSn
is proportional to
58) s^{-(n-2)} PSn
canceling the s^{(n-2)} factor in PSn (56). The coefficient of
the phase space factor (58)=(56) is proportional to the square
of the product of all the couplings that give rise to the transition
amplitudes.
Whenever you evaluate cross sections (2 to n) or decay widths (1 to n),
with whatever method, you should compare your results with the above
general estimate. I often found error in my calculation this way.
In any case, please note an additional factor of 1/16pi^2 from the
phase space whenever we add one more particle in the final state.
It is just like the loop factor for virtual corrections. Even if
the coupling factor g^2 is large, say g^2=1, the n-body rate is small
since it is proportional to (g^2/8pi) * (g^2/16pi^2)^{n-2}.
Before closing exercises for the phase space, let us give the 1-body
phase space (n=1), which is important for the 1-body production
processes like W/Z/Higgs production in hadron collisions. From the
definition of the n-body phase space (43), we can write
59) dPS1(p=k1) = (2pi)^4 \delta^4(p-k1) [d^3 k1/2E1/(2pi)^3]
where E1=\sqrt{(k1)^2+m^2)}. By introducing k1^0, we can re-write
the 3-dimensional phase space by the 4-dimensional one with the
on-shell condition:
60) [d^3 k1/2E1] = d^4 k1 \delta(k1^0-E1)/(2E1)
= d^4 k1 \delta((k1^0)^2-(E1)^2) \Theta(k1^0)
= d^4 k1 \delta((k1)^2-m^2) \Theta(k1^0)
In the last expression, (k1)^2=(k1*k1)=k1^\mu k1_\mu is the invariant
4-momentum square. By inserting (60) back into (59), we find
61) dPS1(p=k1) = (2pi) \delta( p^2 - m^2 )
hw21-3: Derive (61).
In other words, the 1-body phase space is a delta function which picks
up the initial 4-momentum when its invariant squared agrees with the
invariant mass squared of the produced particle.
If a particle X is produced in pp collisions by a collision
62) a + b > X
and if the momentum of a parton a and b are:
63) p_a = (\sqrt{s}/2) (xa, 0, 0, xa)
p_b = (\sqrt{s}/2) (xb, 0, 0, -xb)
in the pp collision rest frame (the lab frame of the symmetric colliders
like the LHC) then, the total 4-momentum of the initial state is
64) p = p_a + p_b
and the final 4-momentum is pX. The 1-body phase space is then
65) dPS1(p_a+p_b=pX) = (2pi) \delta( (p_a+p_b)^2 - mX^2 )
= (2pi) \delta( s*xa*xb - mX^2 )
and the 4-momentum of X is
66) pX = p_a + p_b = (\sqrt{s}/2) (xa+xb, 0, 0, xa-xb)
hw21-4: Show (65) and (66).
*****
Let us come back to the muon decay, and evaluate the amplitudes (40)
40) M_{fi} = -g_W^2/(2m_W^2)
uL(e:p1)^\dagger \sigma_-^\mu vL(nue:p2)
uL(num:p3)^\dagger \sigma_-_\mu uL(mu:p,h)
67) = -g_W^2/(2m_W^2)
ubar(e:p1) \gamma_-^\mu P_L v(nue:p2)
ubar(num:p3) \gamma_-_\mu P_L u(mu:p,h)
In the second line above (67), I rewrite the amplitudes in terms of
Dirac four spinors, \gamma matrices, and projector P_L=(1-\gamma_5)/2.
We can compare the above SM amplitudes for the muon decay with the
the amplitudes of the Fermi operator
68) H = G_F/\sqrt{2}
* \overline{e}(x) \gamma^\alpha (1-\gamma_5) \nue(x)
* \overline{\numu}(x) \gamma_\alpha (1-\gamma_5) \mu(x)
and find
69) G_F/\sqrt{2} = (1/4) (g_W/\rt2)^2/mW^2 = g_W^2/(8m_W^2)
hw21-5: Show (69) by yourself, and calculate G_F from the observed
W boson mass and couplings:
70) mW = 80GeV, g_W^2 = 4pi \alpha_W = 4pi \alpha/\sin^2\theta_W
with \alpha = 1/128, \sin^2\theta_W = 0.233. How well do we
reproduce the observed value of G_F?
The factor of 1/4 comes from the two chiral projectors (1-\gamma_5)/2
for the lepton doublets L, and the V-A currents used to define the
Fermi operator. The factor of additional 1/\sqrt{2} is mysterious,
and has a historical origin. When Fermi introduced the operator,
he assumed that the interactions are vector-vector type, like QED,
conserving Parity.
71) H_old = G_F
* \overline{e}(x) \gamma^\alpha \nue(x)
* \overline{\numu}(x) \gamma_\alpha \mu(x)
The magnitude of G_F was then determined by comparing the muon life
time calculated with the above Hamiltonian (71). After the parity
violation was discovered (in polarized nucleon beta decay distribution)
and after the V-A currents are established, the Fermi operator was
modified to the form (68). With the modification from (71) to (68),
where the currents are changed from V*V to (V-A)*(V-A), and the
G_F is replaced by G_F/\sqrt{2}, the relationship between the muon
decay lifetime and the Fermi (or muon decay) constant G_F remains
the same. Physicists could continue using the same value of G_F,
which is determined solely from the muon life time, even after the
theory changed from V*V to (V-A)*(V-A).
The proof goes as follows: We can express the V-A current product as
72) (V-A)*(V-A) = V*V + V*A + A*V + A*A
the contribution from (Parity violating) V*A and A*V terms vanish
when we integrate over the whole phase space to obtain the muon
life time. When we neglect the electron mass, we can show that
A*A term gives exactly the same contribution to the total integral
of the V*V term. This factor of two appears in the total decay rate,
which is proportional to the square of the amplitudes, and hence to
G_F^2. Therefore, we obtain the same muon life time by multiplying
1/\sqrt{2} in the amplitude.
Now, let us compute the muon lifetime in the SM by using
the amplitudes (40)=(67).
Although it is easy to compute the total decay rate (or the muon
lifetime) starting from the above amplitudes, I would like to
introduce you to a well-known (and useful) technique called Fierz
transformation. It makes the computation of the electron
energy/angular distribution with respect to the muon polarization
direction (the Parity violation !) very easy.
The basic idea behind Fierz transformation is to exchange the fermions
which couple to currents. In our example, the amplitude (40)=(67)
obtained from the SM Feynman rule is a product of two charged currents,
73) mu-numu current and e-nue current
After Fierz transformation, we can express the same amplitude as
a product of two neutral currents,
74) mu-e current and numu-nue current
This is very convenient since the muon polarization information is
then directly transferred to the electron momentum, and the final
numu and nuebar made from the numu-nue current can be integrated out
without loss of information, since there is no way that individual
momentum of the two missing neutrinos are measured.
*****
Let me start from the Fierz identity for the SU(n) generators
in the fundamental representation:
75) \Sum_a (T^a)_ij (T^a)_kl
= T_F {\delta_il \delta_kl -(1/n) \delta_ij \delta_kl}
where the sum is over all the generators, from a=1 to a=n^2-1.
T_F=1/2 is our standard normalization for the generators in the
fundamental (n) representation of SU(n).
hw21-6: Prove (75).
hint 1: multiplying both sides by \delta_{il} \delta_{jk} and sum over
all the indices makes \Sum_a Tr(T^a T^a) = T_F (n^2-1).
hint 2: multiplying (T^b)_{jk} and sum over j,k should give
C_F T^b_{il}, with C_F = T_F (n^2-1)/n.
Applying (75) to SU(2), we find (by noting T_F = 2 for \sigma^i's)
76) \Sum_a (\sigma^a)_ij (\sigma^a)_kl
= 2 {\delta_il \delta_kj -(1/2) \delta_ij \delta_kl}
= 2 \delta_il \delta_kj - \delta_ij \delta_kl
Eq.(76) can be re-expressed as
77) (\sigma_-^\mu)_ij (\sigma_-_\mu)_kl
= \delta_ij \delta_kl - \Sum_a \sigma^a_ij \sigma^a_kl
= \delta_ij \delta_kl - 2\delta_il \delta_kj + \delta_ij \delta_kl
= 2 {\delta_ij \delta_kl - \delta_il \delta_kj}
Likewise, we find
78) (\sigma_-^\mu)_il (\sigma_-_\mu)_kj
= \delta_il \delta_kj - \Sum_a \sigma^a_il \sigma^a_kj
= \delta_il \delta_kj - 2\delta_ij \delta_kl + \delta_il \delta_kj
= 2 {\delta_il \delta_kj - \delta_ij \delta_kl}
From (77) and (78), we find
79) (\sigma_-^\mu)_ij (\sigma_-_\mu)_kl
= - (\sigma_-^\mu)_il (\sigma_-_\mu)_kj
hw21-7: Derive (79) by yourself.
Therefore, the product of two V-A currents is identical (up to the
overall sign) to that of two swapped V-A currents. By inserting (79)
into the amplitude (40)=(67), we find
80) M
= -g_W^2/(2m_W^2) uL(e:p1)^\dagger \sigma_-^\mu vL(nue:p2)
uL(num:p3)^\dagger \sigma_-_\mu uL(mu:p,h)
= g_W^2/(2m_W^2) uL(e:p1)^\dagger \sigma_-^\mu uL(mu:p,h)
uL(num:p3)^\dagger \sigma_-_\mu vL(nue:p2)
In the latter expression above, the first current produces a
left-handed electron from a polarized massive muon, and the second
current produces a pair of numu and nuebar which are unobservable.
When performing QED radiative corrections to the muon decay, the above
Fierz transformation is very useful, since the photon is attached
only to the first current including the loop correction. Such
computation was first done by Kinoshita and Sirlin, which eventually
led Toichiro Kinoshita to propose the Kinoshita's theorem, telling
that observables which sum over final states that have the same
energy (energy degenerate states) are free from the mass singularity,
such as log(Energy/m_electron). The theorem helped us develop
perturbative QCD for inclusive observables which are free from
the mass singularity such as log(Energy/m_quark) or
log(Energy/m_gluon).
Although we can evaluate (80) in the muon rest frame right away,
there is another technique which helps us integrating out the
un-observed numu-nuebar currents.
In order to do this, we parametrize the 3-body phase space as
81) dPS3 = dPS2(p=p1+p23) d(p23)^2/(2pi) dPS2(p23=p2+p3)
Please note here that the four momentum p23=p2+p3 is not that of
the propagating W (q=p-p3=p1+p2). This simplification works only
when we neglect the W propagator correction, which is proportional
to q^2/m_W^2 \sim 10^{-6}.
The differential decay width is now written as
82) d\Gamma(mu(h) > e numu nuebar)
= 1/2M |M(mu(p,h) > e(p1,L) + numu(p3,L) + nuebar(p2,R))|^2 dPS3
= 1/2M (g^2/(2mW^2))^2
| uL(p1)^\dagger \sigma_-^\mu uL(p,h)
uL(p3)^\dagger \sigma_-_\mu vL(p2) |^2 dPS3
= (g^4/8mW^4)/M
uL(k1)^\dgr \sigma_-^\mu uL(p,h) (uL(p1)^\dgr \sigma_-^\nu uL(p,h))^*
uL(k3)^\dgr \sigma_-_\mu vL(p2) (uL(p3)^\dgr \sigma_-_\nu vL(p2))~*
dPS3
= (g^4/8mW^4)/M
uL(k1)^\dgr \sigma_-^\mu uL(p,h) (uL(p1)^\dgr \sigma_-^\nu uL(p,h))^*
uL(k3)^\dgr \sigma_-_\mu vL(p2) (uL(p3)^\dgr \sigma_-_\nu vL(p2))~*
dPS2(p=p1+p23) d(p23)^2/(2pi) dPS2(p23=p2+p3)
hw21-8: Derive (82) by yourself.
At this stage, we note that the numu-nuebar current component of
the decay rate depends only on their 4-momenta, p2 and p3, and
their contribution can be integrated out for a given (p23)^2.
Let us make the phase space integration of the term
83)
uL(p3)^\dgr \sigma_-_\mu vL(p2) (uL(p3)^\dgr \sigma_-_\nu vL(p2))~*
dPS2(p23=p2+p3)
in the rest frame of p23, by denoting (p23)^2=m^2
84) p23 = (m, 0, 0, 0)
p2 = (m/2)(1, \sinth\cosphi, \sinth\sinphi, \sinth)
p3 = (m/2)(1, -\sinth\cosphi, -\sinth\sinphi, -\sinth)
85) dPS2(p23=p2+p3) = (1/8pi) d\costh/2 d\phi/2pi
The numu and nuebar wave functions are:
86) uL(p3) = Rz(phi) Ry(-pi+theta) \rt{m} (0,1)^T
vL(p2) = Rz(phi) Ry(theta) \rt{m} (0,-1)^T
hw21-9: Compute (86), and obtain the currents (87)
87a) uL(p3)^\dgr \sigma_-_\mu vL(p2)
87b) (uL(p3)^\dgr \sigma_-_\nu vL(p2))~*
hw21-10: Observe that the angular integration over the tensor (83)
vanishes for all the off-diagonal elements, and the diagonal
elements give (88) [tell me if 1/12pi factor is OK or not]
88) \Int { uL(p3)^\dgr \sigma_-_\mu vL(p2)
(uL(p3)^\dgr \sigma_-_\nu vL(p2))~* } dPS2(p23=p2+p3)
= m^2/(12pi) \diag{ 0, 1, 1, 1 }
= m^2/(12pi) { -g^\mu\nu + p23^\mu p23^\nu/(p23)^2 }
Note that the bottom line in (88) agrees with the second line in the
p23 rest frame. The covariant expression in the bottom line is valid
in an arbitrary Lorentz frame since the current products transform as
a tensor when integrated over the invariant internal phase space.
We insert (88) into (82), and find
89) d\Gamma(mu(h) > e numu nuebar)
= 1/2M |M(mu(p,h) > e(p1,L) + numu(p3,L) + nuebar(p2,R))|^2 dPS3
= (g^4/8mW^4)/M
uL(p1)^\dgr \sigma_-^\mu uL(p,h) (uL(p1)^\dgr \sigma_-^\nu uL(p,h))^*
uL(p3)^\dgr \sigma_-_\mu vL(p2) (uL(p3)^\dgr \sigma_-_\nu vL(p2))~*
dPS2(p=p1+p23) d(p23)^2/(2pi) dPS2(p23=p2+p3)
= (g^4/8mW^4)/M
uL(p1)^\dgr \sigma_-^\mu uL(p,h) (uL(p1)^\dgr \sigma_-^\nu uL(p,h))^*
m^2/(12pi) { -g^\mu\nu + p23^\mu p23^\nu/m^2 }
dm^2/(2pi) dPS2(p=p1+p23)
The invariant mass squared m^2=(p23)^2 can be expressed as
90a) m^2 = p23^2 = (p-p1)^2 = M^2 -2p*p1 = M^2 (1-x)
90b) x = 2p*p1/M^2 = 2E_e/M = 1-m^2/M^2
by using the electron energy E_e in the muon rest frame. By noting
91a) dm^2 = M^2 dx
91b) dPS2(p=p1+p23) = 1/8pi (1-(p23)^2/p^2) d\costh/2
= x/16pi d\costh
we arrive at the expression
92) d\Gamma / dx d\costh
= (g^4/8mW^4)/M m^2/(12pi) M^2/(2pi) x/16pi
uL(p1)^\dgr \sigma_-^\mu uL(p,h) (uL(p1)^\dgr \sigma_-^\nu uL(p,h))^*
{ -g^\mu\nu + p23^\mu p23^\nu/m^2 }
= (g^4/8mW^4) M^3/(384pi^3) x(1-x)
uL(p1)^\dgr \sigma_-^\mu uL(p,h) (uL(p1)^\dgr \sigma_-^\nu uL(p,h))^*
{ -g^\mu\nu + p23^\mu p23^\nu/m^2 }
= (G_F)^2 M^3/(96pi^3) x(1-x)
uL(p1)^\dgr \sigma_-^\mu uL(p,h) (uL(p1)^\dgr \sigma_-^\nu uL(p,h))^*
{ -g^\mu\nu + p23^\mu p23^\nu/m^2 }
where in the last part I used
93) G_F^2 = (g^2/8mW^2*\rt{2})^2 = g^4/32mW^2
hw21-11: Derive (92) by inserting (88) into (82).
Now the problem is reduced to compute the current
94) uL(p1)^\dgr \sigma_-^\mu uL(p,h)
in the muon rest frame, when the muon is polarized along the
z-axis (h=J_z=1/2),
95) uL(p,h=J_z=1/2) = \sqrt{M} (1,0)^T
and the electron momentum is
96) p1^\mu = (M/2) x(1, \sin\theta, 0, \cos\theta)
and its wave function reads
97) uL(k1) = Ry(\theta) \sqrt{Mx} (0,1)^T
Since the muon spin polarization axis (z-axis) is the symmetry axis of
the problem, I ignore (integrated out) the trivial azimuthal angle,
by setting \Int d\phi/2pi = 1.
Note also
98) p23^\mu = p^\mu - p1^\mu
= M/2 (2-x, -x\sin\theta, 0, -x\cos\theta)
hw21-12: Calculate the electron wave function (97), and evaluate
the current (94), and obtain a compact expression for the
energy-angular distribution of the electron in the rest frame
of the polarized muon (99):
99) d\Gamma
--------------
dx d\cos\theta
hw21-13: Observe Parity violating asymmetry in the electron angular
distribution. Does the electron prefer to be emitted along the muon
spin direction (\cos\theta>0) or in the backward direction
(\cos\theta<0) ?
This type of Parity violating asymmetry was predicted by T.D.Lee and
C.N.Yang in 1956 (as a possible solution of the K_L-K_S puzzle), and
was observed in the electron angular distribution in polarized nucleon
decay a year later by C.S.Wu. Because the solution of the K_L-K_S
puzzle is NOT Parity violation but that they differ by their CP
parity (with small violation, discovered in 1964), we may regard
that it was a successful prediction based on the wrong assumption.
hw21-14: Integrate out the electron energy and angles, and obtain
the total decay width of the muon, or the muon lifetime. How well
do we agree with the observed value of the muon lifetime? Is the
agreement or disagreement consistent with our approximation?
*****
Here, I give two comments.
First, about the ratio of the \mu life time and the \tau lifetime.
From the above calculation, we learned that
100) 2m\Gamma = |M|^2 PS3
where m=m_\mu. The amplitudes scale as
101) M = G_F * m^2
since there are 4 external fermions, and all their energies are
scaled by \sqrt{m_\mu}. 3-body phase space is proportional to
102) PS3 = m^2
By combining (100)-(102), we observe
103) \Gamma = G_F^2 m^5
ignoring the numerical factors. This scaling low should work for
\tau decays, since \tau mass is still negligibly small as compared
to the W mass. We therefore expect the following:
104) \Gamma(\tau \to e \nuebar \nutau) m_\tau
--------------------------------- = [ ------ ]^5
\Gamma(\mu \to e \nuebar \numu ) m_\mu
whose numerical value should be (1.78/0.106)^5=1.33*10^6.
Please check this naive prediction against the data. The partial
width can be obtained by multiplying the total width by the branching
fraction:
105) \Gamma(\tau \to e \nuebar \nutau)
= \Gamma_\tau * B(\tau \to e \nuebar \nutau)
hw21-15: Please obtain \Gamma(\tau \to e \nuebar \nutau) from the PDG
table, and compare it with our prediction (104). How well do we
reproduce the data? Is it consistent with our approximations?
*****
Another problem is why the neutron lifetime is so extremely long. We
find that the weak transition amplitudes for the process
106) n(p) \to p(p1) + e(p2) + nuebar(p3)
is not too much different from the amplitudes for the muon decay.
In fact, since the overall mass scale of the neutron decay is the
neutron mass, which is about 9 times larger than the muon mass.
We could have predicted that the neutron decay width is 9^5 = 6*10^4
times larger than the muon decay width, by using the (m_n/m_\mu)^5
rule that worked for the tau lepton width. The neutron width is
actually 10^{-10} times the muon width. What is the origin of the
10^{-15} suppression?
Part of this huge suppression factor comes from the phase space,
because of the near degeneracy of the neutron and proton masses:
107) m(n) - m(p) = 1.29 MeV
which is only 2.5 times the electron mass
108) a = m(e)/(m(n) - m(p)) = 0.51/1.29 = 0.40
Since
109) M = m(n) = 940MeV
the 3-body phase space is
110) M^2 1/(256\pi^3) = 1.26*10^{-4) M^2
if all the decay particles are massless. In case of the muon decay,
(110) is an excellent approximation, where M = m_\mu. In case of
the neutron decay (106), the phase space suppression is extremely
strong. Let us estimate it by using the exact formula
111) dPS3
= dPS2(p=p1+p23) d(m23)^2/(2pi) dPS2(p23=p2+p3)
= 1/(8pi) 2p1^*/M d(m23)^2/(2pi) 1/(8pi) (1-me^2/(m23)^2)
= 1/(128pi^3) d(m23)^2 2p1^*/M (1-me^2/(m23)^2)
The integration region of (m23) is
112) M-m(p) > m23 > me
I introduce an integration variable
113) x = m23/(M-m(p))
and the integration range is
114) 1 > x > a = 0.40 (see (98))
115) d(m23)^2 = (M-m(p))^2 dx^2 = 2(M-m(p))^2 x dx
116) 2p1^*/M
= 1/M^2 * 2Mp1^*
= 1/M^2 *[ (M+mp+m23)(M+mp-m23)(M-mp+m23)(m-mp-m23) ]^{1/2}
= 1/M^2 *(M+mp)*(M-mp)*[(1+x)(1-x)]^{1/2}
= 2(M-mp)/M * (1-x^2)^{1/2}
Inserting (115) and (116) into (111), I find
117) dPS3
= 1/(128pi^3) d(m23)^2 2p1^*/M (1-me^2/(m23)^2)
= 1/(128pi^3) 2(M-mp)^2 xdx 2(M-mp)/M (1-x^2)^{1/2} (1-a/x)
= 1/(32pi^3) (M-mp)^3/M dx (x-a) \sqrt{1-x^2}
So, all I need to do is the integral
118) \Int_a^1 dx (x-a) \sqrt{1-x^2}
= (1/2) \Int_{a^2}^1 d(x^2) \sqrt{1-x^2}
-a \Int_a^1 dx \sqrt{1-x^2}
= (1/2) (2/3) (1-y)^{3/2}|^{a^2}_1
-a \Int_0^{\arccos(a) d\theta \sin^2\theta
= (1/2) (2/3) (1-a^2)^{3/2}
-a \Int_0^{\arccos(a)} d\theta (1-\cos(2\theta))/2
= (1/3) (1-a^2)^{3/2}
-(a/2) {\arccos(a) - (1/2)\sin(2\theta)|^{arccos(a)}_0
= (1/3) (1-a^2)^{3/2}
-(a/2) {\arccos(a) - (1/2)\sin(2\arccos(a))}
I'm not sure if my integral (118) is right. I guess that its numerical
value should be somewhere around (1-a)*0.2 \sim 0.1
Inserting this into (117) gives
119) PS3 = 1/(320pi^3) (M-mp)^3/M
Compared to the massless 3 body phase space (110) the suppression
factor is
120) PS3/PS3(massless decay products)
= ((M-mp)/M)^3
= (1.29/940)^3
= 3*10^{-9}
hw21-16: Follow the above calculation of the 3 body phase space,
and check numerically if my estimate above (120) is fine.
This is still not enough to explain the smallness of the neutron width.
We should estimate the matrix elements. I note that both the neutron
and proton wave functions are large, proportional to \sqrt{M}, since
they are non-relativistic. On the other hand the electron and
neutrino wave functions are small because of the smallness of their
energy, bounded by (mn-mp). The amplitude is hence suppressed by
this factor, as compared to the massless fermion case. The width
should hence be suppressed by its squared. Now, I find
121) \Gamma(n to penu)
= \Gamma(mp=0) * ((mn-mp)/mn)^2 * PS3/PS3(mp=0)
= \Gamma(mp=0) * (1.3/950)^2 * 3*10^{-9}
= \Gamma(mp=0) * 2*10^{-6} * 3*10^{-9}
= \Gamma(mp=0) * 6*10^{-15}
Therefore, my naive prediction is
122) \Gamma(n to penu)
= \Gamma(mu to enunu) * (m_n/m_mu)^5 * 6*10^{-15}
= \Gamma(mu to enunu) * 5*10^5 * 6*10^{-15}
= \Gamma(mu to enunu) * 3*10^{-9}
and hence
123) \tau(n to penu) = 0.3 * 10^9 \tau(mu to enunu)
= 0.3 * 10^9 * 2*10^{-6} s
= 600 s
= 10 min
Well, it's not that bad. Please follow my estimates above, and you
may obtain more accurate comparison.
I do this type of rough order-of-magnitude estimates whenever it
is relevant. As you may learn from reading my memo above, I don't
need a computer to make such estimates. Very often, I find that
my estimates are quite well, and whenever they disagree significantly,
I learn something new in physics. Fun in physics sometimes lies in
such details.
If you could follow and enjoy my discussion above, you really learned
well from my lectures.
That's all for this long homework 21.
Best regards,
Kaoru
\end{document}