-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw7.tex
575 lines (518 loc) · 19.5 KB
/
hw7.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
\documentclass[12pt]{article}
\usepackage{amsmath,graphicx,color,epsfig,physics}
\usepackage{float}
\usepackage{subfigure}
\usepackage{slashed}
\usepackage{color}
\usepackage{multirow}
\usepackage{feynmp}
\textheight=9.5in \voffset=-1.0in \textwidth=6.5in \hoffset=-0.5in
\parskip=0pt
\def\del{{\partial}}
\begin{document}
\begin{center}
{\large\bf HW7 for Advanced Particle Physics} \\
\end{center}
\vskip 0.2 in
Dear students,\\
This week, I introduce the Higgs mechanism of the SM.
Before giving the homework for the Higgs mechanism, let
me give two comments regarding the past homeworks.
First, about the vector ($3 \times 3$ matrix) representation
of rotation, $SO(3)$.
\begin{eqnarray}
O(\theta_1,\theta_2,\theta_3) = e^{ i (\theta_1 J_1 + \theta_2 J_2 + \theta_3 J_3) }
\end{eqnarray}
The above oprators transform the coordinate system,
\begin{eqnarray}
(x,y,z)^T \to (x',y',z')^T = O(\theta_1,\theta_2,\theta_3) (x,y,z)^T
\end{eqnarray}
The object, $v = (v_x,v_y,v_z)^T$, then transform as
\begin{eqnarray}
v \to v' = (v'_x,v'_y,v'_z)^T
= O(\theta_1,\theta_2,\theta_3)^{-1} v
= e^{ -i (\theta_1 J_1 + \theta_2 J_2 + \theta_3 J_3) } v
\end{eqnarray}
Therefore, when you obtain the generators from the
transformations of the right-handed coordinates,
you should use
\begin{eqnarray}
(x,y,z)^T \to (x',y',z')^T = O(\theta_1,\theta_2,\theta_3) (x,y,z)^T
\end{eqnarray}
Also, please note that the right handed coordinate
rotate e.g. as
\begin{eqnarray}
(x,y,z)^T \to (x',y',z)^T = O(0,0,\theta) (x,y,z)^T
= e^{ i \theta J_3 } (x,y,z)^T
\end{eqnarray}
with
\begin{eqnarray}
x' &=& \cos\theta x+ \sin \theta y \\
y' &=& -\sin \theta x + \cos \theta y
\end{eqnarray}
This determines $J_3$ as $(J_3)_{12} = -i$.
Then, $J_1$ and $J_2$ are obtained by cyclic rotation,
\begin{eqnarray}
(J_1)_{23} = (J_2)_{31} = (J_3)_{12} = -i
\end{eqnarray}
$J_1$, $J_2$, $J_3$ are now fixed by their Hermiticity.
The correctness should be checked by the fundamental
commutation relation for the right-handed rotations:
\begin{eqnarray}
[ J_i, J_j ] = i \epsilon_{ijk} J_k
\end{eqnarray}
or
\begin{eqnarray}
&&[{J_1},{J_2}]= i {J_3}\\
&&[{J_2},{J_3}]= i {J_1}\\
&&[{J_3},{J_1}]= i {J_2}
\end{eqnarray}
Some of you made the sign errors e.g. for $J_1$ and $J_2$,
and then the first commutation relation holds, but not
the other two.
It is very very important to note that there is no
sign ambiguity for the rotation generators, because
of the fundamental commutation relations.
As for the relation between $U(1)$ and $SO(2)$, all what
I wanted you to recall is the well known relationship
between the rotation in the real $(x,y)$ coordinate and
the phase transformation of the complex number z=x+iy.
In short, $U(1)$ transformation of $z$,
\begin{eqnarray}
z \to z' = e^{i\theta} z
= e^{i \theta} |z| e^{i\arg(z)}
= |z| e^{i(\arg(z)+\theta)}
\end{eqnarray}
can be expressed as
\begin{eqnarray}
x+iy \to x'+iy' &=& e^{i\theta} (x+iy)
= (\cos\theta+i\sin\theta)(x+iy) \\
&=& (\cos\theta x -\sin\theta y)
+i(\sin\theta x +\cos\theta x)
\end{eqnarray}
which is an $SO(2)$ rotation,
\begin{eqnarray}
(x,y)^T \to (x',y')^T = O (x,y)^T.
\end{eqnarray}
This is the right-handed rotation of an object
(rather than the coordinate), since it corresponds
to the rotation of a vector denoted by the complex
number, $z = x+iy$, in the $(x,y)$ plane.
This is the reason why we find
\begin{eqnarray}
O(\theta) = e^{ -i \sigma^2 \theta}
\end{eqnarray}
with the $-i$ factor in front of the $SO(2)$ generator $\sigma^2$,
which is just the $2 \times 2$ ($x$ and $y$) component of the $SO(3)$
generator $J_3$.
{\bf Now, let me give the homework 07 for the Higgs mechanism.}
I introduced the SM Lagrangian as
\begin{eqnarray}
L_{SM} = L_{gauge} + L_{fermion} + L_{Higgs} + L_{Yukawa} \label{eq.7SM}
\end{eqnarray}
and explained how $L_{gauge}$, $L_{fermion}$, $L_{Higgs}$ and $L_{Yukawa}$
are invariant under the SM gauge group,
\begin{eqnarray}
SU(3)_{color} \times SU(2)_L \times U(1)_Y \label{eq.7G}
\end{eqnarray}
In this hw 07, we review $L_{Higgs}$, and
obtain the mass-eigenstate weak bosons (the charged weak
boson $W^+$ and $W^-$, the neutral weak boson $Z$, and the photon $A$
We will then come back to $L_{fermion}$, and find its expressions
in terms of physical gauge bosons, $W$, $Z$, $A$ and gluons ($A^a$).
First, let us review how $SU(2)_L \times U(1)_Y$ gauge
symmetry can be broken spontaneously down to $U(1)_{EM}$
by a very simple $L_{Higgs}$ of the MSM.
$L_{Higgs}$ consists of just one Higgs doublet in the
minimal SM (MSM), which Weinberg introduced in 1967
as a theory of leptons. Its extention to quarks
was achieved in 1971 by Glasho-Illiopoulos-Maiani (GIM)
by postulating the 4'th quark, the charm. Weinberg's
MSM was not able to explain the smallness of
flavor-changing (strangeness-changing) neutral current,
or the extreme smallness of the $K^0-\overline{K^0}$ mixing.
Weinberg therefore proposed his model as a model for
leptonic weak interactions, since he recognized the problem
of applying his model to hadrons. GIM showed that
if there is a 4'th quark in addition to the 3 known
ones (up, down, and strange), the observed smallness
of the FCNC can be explained within Weinberg's MSM.
You should understand all these details during the
course of my lectures. To understand them is to
understand the SM, or the world as we see it now.
The Higgs doublet of the SM has the
$SU(3)_{color} \times SU(2)_L \times U(1)_Y$ quantum numbers
$(1, 2, +1/2)$:
\begin{eqnarray}
\phi=
\begin{pmatrix}
\phi^+ \\ \phi^0
\end{pmatrix} \label{eq.7Higgs}
\end{eqnarray}
where the charge assignment follows the {\bf Gell-Mann Nishijima
relation}
\begin{eqnarray}
Q = T_3 + Y \label{eq.7charge}
\end{eqnarray}
The gauge invariant Lagrangian $L_{Higgs}$ of the doublet Eq.\ref{eq.7Higgs} is
\begin{eqnarray}
L_{Higgs} = (D_\mu \phi)^\dagger (D^\mu \phi) - V(\phi)
\end{eqnarray}
The invariance of the kinetic part under the gague
transformation
\begin{eqnarray}
\phi(x) \to U(x) \phi(x)
\end{eqnarray}
should be clear by now from the transformation property of
the covariant derivative
\begin{eqnarray}
D_\mu \to D'_\mu = U(x) D_\mu U(x)^{-1}
\end{eqnarray}
The potential $V(\phi)$ is a function of $\phi$, without
derivatives. It should be invariant under the SM gauge
transformation
\begin{eqnarray}
V(\phi) \to V(\phi') = V(\phi)
\end{eqnarray}
for all $SU(2)_L \times U(1)_Y$ transformations,
\begin{eqnarray}
\phi \to \phi' = U(\theta^1,\theta^2,\theta^3,\theta^0) \phi
\end{eqnarray}
with
\begin{eqnarray}
U = e^{i(T^1\theta^2 +T^2\theta^2 +T^3\theta^3 +Y\theta^0)}
\end{eqnarray}
We can easily find the solution by noting that $\phi^\dagger \phi$
is invariant under all the transformations. We can now make
the gauge invariant potential as follows:
\begin{eqnarray}
V(\phi) = \frac{\lambda}{4} (\phi^\dagger \phi)^2
+ \mu^2 (\phi^\dagger \phi)
\end{eqnarray}
Note that this potential has a minimum when $\lambda > 0$
Let us denote the location of the minimum (vacuum) as
\begin{eqnarray}
<\phi> = ( <\phi_u>, <\phi_d> )^T \label{eq.7vacuum}
\end{eqnarray}
Here, I wrote
\begin{eqnarray}
\phi =
\begin{pmatrix}
\phi_u \\ \phi_d
\end{pmatrix}
\end{eqnarray}
instead of Eq.\ref{eq.7Higgs}, in order to show that the definition
of the electric charge, Eq.\ref{eq.7charge}, follows from Eq.\ref{eq.7vacuum} by an $SU(2)_L \times U(1)_Y$ rotation:
\begin{eqnarray}
\phi \to \phi' = U(\theta_2) U(\theta_3) U(\theta_0) \phi \label{eq.721ro}
\end{eqnarray}
where $U(\theta_2) = U(0,\theta_2,0,0)$, $U(\theta_3) = U(0,0,\theta_3,0)$, $U(\theta_0) = U(0,0,0,\theta_0)$, with the notation
\begin{eqnarray}
U(\theta_1,\theta_2,\theta_3,\theta_0)
= e^{ i \sum_k \theta_k T^k }
\end{eqnarray}
where $T^k = \sigma^k/2 (k=1,2,3)$ and $T^0 = {\rm diag}\{1,1\}/2$.
For instance, if
\begin{eqnarray}
<\phi_u> &=& \frac{v}{\sqrt 2} \sin\theta e^{i\alpha} \nonumber \\
<\phi_d> &=& \frac{v}{\sqrt 2} \cos\theta e^{i\beta} \label{eq.7egcon}
\end{eqnarray}
with $v>0$, then the transformation Eq.\ref{eq.721ro} with
\begin{eqnarray}
\theta_0 &=& -(\alpha+\beta)\\
\theta_3 &=& -(\alpha-\beta)\\
\theta_2 &=& -2\theta
\end{eqnarray}
gives
\begin{eqnarray}
<\phi> \to <\phi'>
&=& U(\theta_2) U(\theta_3) U(\theta_0)
\begin{pmatrix}
<\phi_u> \\ <\phi_d>
\end{pmatrix} \\
&=& U(\theta_2) U(\theta_3)
\begin{pmatrix}
v \sin\theta e^{i(\alpha-\beta)/2} /\sqrt 2 \\
v \cos\theta e^{i(\beta-\alpha)/2} /\sqrt 2
\end{pmatrix}
= U(\theta_2)
\begin{pmatrix}
\frac{\sin\theta v}{\sqrt 2} \\
\frac{\cos\theta v}{\sqrt 2}
\end{pmatrix} \\
&=&
\begin{pmatrix}
0 \\ \frac{v}{\sqrt 2}
\end{pmatrix} \label{eq.7eg}
\end{eqnarray}
{\bf hw07-1}: Show the above derivation, from Eq.\ref{eq.7egcon} to Eq.\ref{eq.7eg}.
This exercise is important for you to understand that the
preservation of electromagnetic gauge invariance is automatic
in MSM.
Because the Lagrangian is $SU(2)_L \times U(1)_Y$ invariant,
we can always perform the transformation (Eq.\ref{eq.7eg}) to arrive at
the definition of the $T^3$ axis, such that the v.e.v. exists
only in the lower ($T^3 = -1/2$) component of the $Y=1/2$ Higgs
doublet, where the Nishijima-GellMann relation (Eq.\ref{eq.7charge}) tells
that only the $Q_{EM}=0$ component of the Higgs doublet has
the v.e.v.. This ensures that the $U(1)_{EM}$ invariance holds
even after the symmetry breaking. We express this fact as
\begin{eqnarray}
SU(2)_L \times U(1)_Y \to U(1)_{EM}
\end{eqnarray}
Now, if the Higgs potential is minimized at Eq.\ref{eq.7egcon} or Eq.\ref{eq.7eg}, then the potential should have zero derivative there:
\begin{eqnarray}
\left (\frac{\del V(\phi)}{\del \phi} \right )_{ \phi = <\phi>} = 0 \label{eq.7pd}
\end{eqnarray}
From the MSM potential (Eq.\ref{eq.7vacuum}), we find
\begin{eqnarray}
[\frac{\lambda}{2} (<\phi>^\dagger <\phi>) + \mu^2] <\phi>^\dagger = 0
\end{eqnarray}
Because $<\psi>^\dagger <\psi>$ is positive semi-definite,
we find
\begin{enumerate}
\item If $\mu^2 > 0$, then $<\phi>^\dagger = <\phi> = 0$
is the only solution. \label{it.7s1}
\item If $\mu^2 < 0$, then in addition to $<\phi> = 0$,
$<\phi>^\dagger <\phi> = -2\mu^2/\lambda$ also is a solution. \label{it.7s2}
\end{enumerate}
{\bf hw07-2}: Show above \ref{it.7s1} and \ref{it.7s2}. Especially, when \ref{it.7s2} holds, please compare the energy of the two solutions and find the true vacuum (the lowest energy state of the potential).
When \ref{it.7s1} holds, the potential is minimized at the symmetric
point $<\phi> = ( 0, 0 )^T$, and there is no breakdown of the
symmetry. The Higgs doublet (the charged boson and the complex
neutral boson) has a common mass of $\mu$, all the weak bosons
are massless, and all the quarks and leptons are massless.
When \ref{it.7s2} holds, we find the solution
\begin{eqnarray}
<\phi>^\dagger <\phi> = |<\phi_u>|^2 + |<\phi_d>|^2
= \frac{-2\mu^2}{\lambda}
= \frac{v^2}{2} \label{eq.7so}
\end{eqnarray}
gives the lowest energy state, and hence the vacuum.
The meaning of the factor of 1/2 in the definition of v in
Eq.\ref{eq.7so} will become clear later.
From the potential parameters, only the sum of the absolute
value squareds of the upper and lower components of the v.e.v.
of the Higgs doublet $\phi$ is determined. The most general
parametrization of the v.e.v. should hence be as in Eq.\ref{eq.7vacuum}
and Eq.\ref{eq.7egcon}. As shown in Eq.\ref{eq.7eg}, the new $T^3$ axis can be chosen along the direction of the v.e.v., such that the v.e.v. resides
solely in the $T^3 = -1/2$ component,
\begin{eqnarray}
<\phi> =
\begin{pmatrix}
0 \\ \frac{v}{\sqrt 2}
\end{pmatrix}
\end{eqnarray}
Most importantly, with this choice of isospin axis,
the Gell-Mann Nishijima relation
\begin{eqnarray}
Q <\phi> = (T^3 + Y) <\phi> = 0 \label{eq.7charge0}
\end{eqnarray}
or equivalently,
\begin{eqnarray}
U_{EM}(\theta) <\phi> = e^{iQ\theta} <\phi> = <\phi>. \label{eq.7charge0e}
\end{eqnarray}
{\bf hw07-3}: Show Eq.\ref{eq.7charge0} and Eq.\ref{eq.7charge0e}.
When the generator of a symmetry ($Q$ in case of EM $U(1)$ symmetry)
vanishes the vacuum Eq.\ref{eq.7charge0}, the vacuum does not change (symmetric) under the symmetry transformation.
All the other 3 generators of the $SU(2)\times U(1)$ do not vanish
the vacuum,
$T^1$,$T^2$, $T^3-Y$
and the symmetry associated with the above 3 generators are
broken by the vacuum (spontaneously broken).
Let us first obtain the mass-eigen states of the massive
weak bosons by inserting Eq.\ref{eq.7pd} into $L_{Higgs}$
\begin{eqnarray}
L_{Higgs}(\phi=<\phi>)
= (D_\mu \phi)^\dagger (D^\mu \phi)|_{\phi=<\phi>} \label{eq.7LHiggs}
\end{eqnarray}
up to cnstants, since $V(\phi=<\phi>)$ is just a constant.
(In QFT, the minimum/vacuum energy is set to zero,
$V(<\phi>)=0$, by adding/subtracting the constant.)
\begin{eqnarray}
D_\mu <\phi>
&=& D_\mu
\begin{pmatrix}
0 \\ \frac{v}{\sqrt 2}
\end{pmatrix}
=(\del_\mu + i g T^k W^k_\mu + i g' Y B_\mu)
\begin{pmatrix}
0 \\ \frac{v}{\sqrt 2}
\end{pmatrix} \\
&=&i( g T^k W^k_\mu + g' Y B_\mu)
\begin{pmatrix}
0 \\ \frac{v}{\sqrt 2}
\end{pmatrix} \\
&=&i[g(T^1W^1_\mu+T^2W^2_\mu) + (gT^3W^3_\mu+g'YB_\mu)]
\begin{pmatrix}
0 \\ \frac{v}{\sqrt 2}
\end{pmatrix} \\
&=&i[(g/\sqrt2)(T^+W^+_\mu+T^-W^-_\mu)+(1/2)(gW^3_\mu \sigma^3+g'B_\mu)]
\begin{pmatrix}
0 \\ \frac{v}{\sqrt 2}
\end{pmatrix} \\
&=&\frac{v}{\sqrt 2}
\begin{pmatrix}
\frac{g}{\sqrt 2} W^+_\mu \\ (-gW^3_\mu+g'B_\mu)/2
\end{pmatrix}
=\frac{iv}{\sqrt 2}
\begin{pmatrix}
\frac{g}{\sqrt 2} W^+_\mu \\ -(g_z/2) Z_\mu
\end{pmatrix}\\
&=& i
\begin{pmatrix}
\frac{gv}{2} W^+_\mu \\ -\frac{g_zv}{2\sqrt2} Z_\mu
\end{pmatrix} \label{eq.7ppsi}
\end{eqnarray}
{\bf hw07-4}: Show Eq.\ref{eq.7ppsi}, by using Eq.(\ref{eq.7use1},\ref{eq.7use2},\ref{eq.7use3},\ref{eq.7use4},\ref{eq.7use5}).
In the above, I used
\begin{eqnarray}
T^1 W^1_\mu + T^2 W^2_\mu
&=& (T^1+iT^2)(W^1_\mu-iW^2_\mu)/2 + (T^1-iT^2)(W^1_\mu+iW^2_\mu)/2 \nonumber \\
&=& T^+(W^1_\mu-iW^2_\mu)/2 + T^-(W^1_\mu+iW^2_\mu)/2 \nonumber \\
&=& (T^+ W^+_\mu)/\sqrt2 + (T^- W^-_\mu)/\sqrt2 \label{eq.7use1}
\end{eqnarray}
where
\begin{eqnarray}
W^+_\mu &=& (W^1_\mu - iW^2_\mu)/\sqrt2 \\ \label{eq.7use2}
W^-_\mu &=& (W^1_\mu + iW^2_\mu)/\sqrt2 \label{eq.7use3}
\end{eqnarray}
Please note the sign in the r.h.s.. In QFT, the operator $W^+_\mu$
annihilates the $W^+$ boson, and creates the $W^-$ boson. The factor
of $1/\sqrt2$ appears since $W^1$ and $W^2$ (together with $W^3$) are real
fields, while $W^+$ and $W^-$ are complex fields.
As for the neutral weak boson, I introduce the definition
\begin{eqnarray}
Z_\mu = (g W^3_\mu - g' B_\mu)/\sqrt{ g^2 + g'^2 } \label{eq.7use4}
\end{eqnarray}
and also introduced the coupling
\begin{eqnarray}
g_z = \sqrt{ g^2 + g'^2 } \label{eq.7use5}
\end{eqnarray}
Now, we find
\begin{eqnarray}
L_{Higgs}(\phi=<\phi>)
&=& (gv/2)^2 W^-_\mu W^{+ \mu} + (g_z v/2\sqrt2)^2 Z_\mu Z^\mu \nonumber \\
&=& (gv/2)^2 W^-_\mu W^{+ \mu} + (g_z v/2)^2 Z_\mu Z^\mu/2 \nonumber \\
&=& m_W^2 W^-_\mu W^{+ \mu} + m_Z^2 Z_\mu Z^\mu/2 \label{eq.7LH}
\end{eqnarray}
{\bf hw07-5}: Show Eq.\ref{eq.7LH}.
Please note the $1/2$ factor for the $Z$ boson mass term, which
appears because the $Z$ boson is a real field. From Eq.\ref{eq.7so}, we find
\begin{eqnarray}
m_W = g v/2 \\
m_Z = g_z v/2
\end{eqnarray}
Now, we introduce the Weinberg rotation of the neautral weak
bosons:
\begin{eqnarray}
\begin{pmatrix}
W^3_\mu \\ B_\mu
\end{pmatrix}
=
\begin{pmatrix}
\cos\theta_W & \sin\theta_W \\
-\sin\theta_W & \cos\theta_W
\end{pmatrix}
\begin{pmatrix}
Z_\mu \\ A_\mu
\end{pmatrix}
\end{eqnarray}
or its inverse,
\begin{eqnarray}
\begin{pmatrix}
Z_\mu \\ A_\mu
\end{pmatrix}
=
\begin{pmatrix}
\cos\theta_W & -\sin\theta_W \\
\sin\theta_W & \cos\theta_W
\end{pmatrix}
\begin{pmatrix}
W^3_\mu \\ B_\mu
\end{pmatrix}
\end{eqnarray}
By comparing Eq.\ref{eq.7LHiggs} with Eq.\ref{eq.7use4}, we find
\begin{eqnarray}
\cos\theta_W = g/g_z\\
\sin\theta_W = g'/g_z
\end{eqnarray}
Finally, let us obtain the explicit form of the EW covariant
derivative in terms of the $W$, $Z$, $A$ bosons:
\begin{eqnarray}
D_\mu
&=&\del_\mu +i g T^k W^k_\mu + i g' Y B_\mu
=\del_\mu +ig(T^1W^1_\mu+T^2W^2_\mu+T^3W^3_\mu) +ig'YB_\mu \nonumber \\
&=&\del_\mu +i(g/\sqrt2)(T^+W^+_\mu + T^-W^-_\mu)
+igT^3 W^3_\mu
+ig'Y B_\mu \nonumber \\
&=&\del_\mu +i(g/\sqrt2)(T^+W^+_\mu + T^-W^-_\mu)
+igT^3 ( \cos\theta_W Z_\mu + \sin\theta_W A_\mu) \nonumber \\
&&+ig'Y (-\sin\theta_W Z_\mu + \cos\theta_W A_\mu)\nonumber \\
&=&\del_\mu +i(g/\sqrt2)(T^+W^+_\mu + T^-W^-_\mu)
+i(g\cos\theta_W T^3 -g'\sin\theta_W Y) Z_\mu\nonumber \\
&&+i(g\sin\theta_W T^3 +g'\cos\theta_W Y) A_\mu \nonumber \\
&=&\del_\mu +i(g/\sqrt2)(T^+W^+_\mu + T^-W^-_\mu)
+ig_Z(\cos^2\theta_W T^3 -\sin^2\theta_W Y) Z_\mu
\nonumber \\ &&+ie(T^3 + Y) A_\mu \nonumber \\
&=&\del_\mu +i(g/\sqrt2)(T^+W^+_\mu + T^-W^-_\mu)
+ig_Z(T^3 -\sin^2\theta_W Q) Z_\mu
+ieQ A_\mu \label{eq.7del}
\end{eqnarray}
{\bf hw07-6}: Reproduce the above derivation Eq.\ref{eq.7del}.
In the last two steps, I introduced the new coupling
\begin{eqnarray}
e = g\sin\theta_W = g'\cos\theta_W \label{eq.7e}
\end{eqnarray}
and used the Nishijima-GellMann relation
\begin{eqnarray}
Q = T^3 + Y \label{eq.7charge3}
\end{eqnarray}
to replace $Y$ with $Q$. The last form of the covariant derivative
is most convenient for computing the weak interaction amplitudes
in the SM. It shows that the massless gauge boson $A_\mu$ couples
to the matter with the coupling strength e of Eq.\ref{eq.7use5} and the
charge $Q$ according to Eq.\ref{eq.7charge3}.
Since we know the magnitude of $e$, which is $\sqrt{4\pi\alpha}$,
\begin{eqnarray}
e = \sqrt{ 4\pi \alpha }
= \sqrt{ 4\pi /137 }
= \sqrt{ 0.092 }
= 0.30
\end{eqnarray}
it is useful to note
\begin{eqnarray}
g &=& e/\sin\theta_W \\
g' &=& e/\cos\theta_W \\
g_Z &=& g/\cos\theta_W = e/(\sin\theta_W \cos\theta_W)
\end{eqnarray}
For $\sin^2\theta_W = 0.233$, the coupling strengths are:
\begin{eqnarray}
g = 0.62\\
g' = 0.34 \\
g_Z = 0.71
\end{eqnarray}
I memorize Eq.\ref{eq.7e} as one set of equations:
\begin{eqnarray}
e = g \sin\theta_W
= g' \cos\theta_W
= g_Z \sin\theta_W \cos\theta_W
\end{eqnarray}
With the above knowledge of the electroweak coupling strengths
and the last expression of the covariant derivative Eq.\ref{eq.7del},
which I copy below:
\begin{eqnarray}
D_\mu =\del_\mu +i(g/\sqrt2)(T^+W^+_\mu + T^-W^-_\mu)
+ig_Z(T^3 -\sin^2\theta_W Q) Z_\mu
+ieQ A_\mu
\end{eqnarray}
we can express all the gauge interactions of the quarks
and leptons in $L_{fermion}$ and also in $L_{gauge}$.
I will come back to them after showing the custodial $SU(2)$
invariance of the MSM Higgs potential and its violation
by the Hypercharge gauge interactions and the Yukawa
interactions in the next lectures.
That's all for hw07.\\
Best regards,\\
Kaoru
\end{document}