-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlayer_compress.py
176 lines (156 loc) · 7.75 KB
/
layer_compress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
import torch
from typing import List, Tuple, Dict, Optional
from safetensors import safe_open
from safetensors.torch import save_file
import logging
import os
import re
import time
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def parse_layer_name(key: str) -> Optional[Tuple[str]]:
"""Parse layer index and projection type from a key name."""
match = re.search(r'base_model\.model\.model\.layers\.(\d+)\.self_attn\.(\w+)_proj\.lora_([ABab])\.weight', key)
if match:
layer_idx = match.group(1)
proj_type = match.group(2) # q or v
lora_type = match.group(3).upper() # A or B
return f"layer_{layer_idx}_{proj_type}_proj", lora_type
return None
def load_safetensors(file_paths: List[str]) -> Dict[str, Dict[str, Tuple[np.ndarray, np.ndarray]]]:
"""Load multiple adapter files and group them by layer name."""
all_adapters = {}
for file_path in file_paths:
if not os.path.exists(file_path):
logger.error(f"File not found: {file_path}")
continue
try:
adapters = {}
base_file = os.path.splitext(os.path.basename(file_path))[0]
logger.info(f"Loading file: {base_file}")
with safe_open(file_path, framework="numpy") as f:
keys = list(f.keys())
layer_groups = {}
for key in keys:
parsed = parse_layer_name(key)
if parsed:
layer_name, lora_type = parsed
if layer_name not in layer_groups:
layer_groups[layer_name] = {'A': None, 'B': None}
layer_groups[layer_name][lora_type] = f.get_tensor(key)
for layer_name, weights in layer_groups.items():
if weights['A'] is not None and weights['B'] is not None:
adapters[layer_name] = (weights['A'], weights['B'])
if adapters:
all_adapters[base_file] = adapters
except Exception as e:
logger.error(f"Error loading {file_path}: {str(e)}")
continue
return all_adapters
def joint_diagonalization(As: List[np.ndarray], Bs: List[np.ndarray], r: int, max_iter: int = 100) -> Tuple[np.ndarray, np.ndarray, List[np.ndarray]]:
"""Perform joint diagonalization on multiple adapter pairs."""
m, k = Bs[0].shape
n = As[0].shape[1]
r = min(r, k, m, n)
U = np.random.randn(m, r)
V = np.random.randn(n, r)
U, _ = np.linalg.qr(U)
V, _ = np.linalg.qr(V)
for _ in range(max_iter):
M = sum(B @ A @ V @ V.T @ A.T @ B.T for A, B in zip(As, Bs))
U, _ = np.linalg.qr(M @ U)
N = sum(A.T @ B.T @ U @ U.T @ B @ A for A, B in zip(As, Bs))
V, _ = np.linalg.qr(N @ V)
Sigmas = [U.T @ B @ A @ V for A, B in zip(As, Bs)]
return U, V, Sigmas
def compress_adapters(adapters: Dict[str, Dict[str, Tuple[np.ndarray, np.ndarray]]], rank: int) -> Dict[str, Tuple[np.ndarray, np.ndarray, Dict[str, np.ndarray]]]:
"""Compress adapters grouped by layer name."""
start_time = time.time()
layer_groups = {}
for file, layers in adapters.items():
for layer_name, (A, B) in layers.items():
if layer_name not in layer_groups:
layer_groups[layer_name] = []
layer_groups[layer_name].append((file, A, B))
compressed = {}
for layer_name, group in layer_groups.items():
As, Bs, file_map = [], [], {}
for idx, (file, A, B) in enumerate(group):
As.append(A)
Bs.append(B)
file_map[file] = idx
U, V, Sigmas = joint_diagonalization(As, Bs, rank)
compressed[layer_name] = (U, V, {file: Sigmas[file_map[file]] for file in file_map})
print(f"Compression completed in {time.time() - start_time:.2f} seconds.")
return compressed
def save_compressed_adapters(compressed: Dict, file_path: str):
"""Save compressed adapters efficiently."""
tensors = {}
for layer_name, (U, V, sigmas) in compressed.items():
tensors[f"{layer_name}.U"] = torch.from_numpy(U)
tensors[f"{layer_name}.V"] = torch.from_numpy(V)
for file, sigma in sigmas.items():
tensors[f"{file}.{layer_name}.Sigma"] = torch.from_numpy(sigma)
save_file(tensors, file_path)
def evaluate_compression(original_adapters: Dict[str, Dict[str, Tuple[np.ndarray, np.ndarray]]], compressed_file: str):
"""Evaluate compression efficiency and reconstruction errors."""
total_original_params = sum(sum(A.size + B.size for A, B in layers.values()) for layers in original_adapters.values())
total_compressed_params = 0
q_errors, v_errors = [], []
early_errors, middle_errors, later_errors = [], [], []
layerwise_errors = {}
with safe_open(compressed_file, framework="pt") as f:
for key in f.keys():
if key.endswith(".U") or key.endswith(".V"):
total_compressed_params += f.get_tensor(key).numel()
for file, layers in original_adapters.items():
layerwise_errors[file] = {}
for layer, (A, B) in layers.items():
U = f.get_tensor(f"{layer}.U").numpy()
V = f.get_tensor(f"{layer}.V").numpy()
Sigma = f.get_tensor(f"{file}.{layer}.Sigma").numpy()
BA_reconstructed = U @ Sigma @ V.T
error = np.linalg.norm(B @ A - BA_reconstructed) / np.linalg.norm(B @ A)
# Store errors for statistics
layerwise_errors[file][layer] = error
layer_idx, proj_type = map(lambda x: int(x) if x.isdigit() else x, re.match(r"layer_(\d+)_(\w+)_proj", layer).groups())
(q_errors if proj_type == "q" else v_errors).append(error)
if layer_idx < 8:
early_errors.append(error)
elif layer_idx < 16:
middle_errors.append(error)
else:
later_errors.append(error)
# Print compression metrics
print("\n--- Compression Metrics ---")
print(f"Total Original Parameters: {total_original_params}")
print(f"Total Compressed Parameters: {total_compressed_params}")
print(f"Compression Ratio: {total_original_params / total_compressed_params:.2f}")
print(f"Parameter Reduction: {100 * (1 - total_compressed_params / total_original_params):.2f}%")
# Print reconstruction error statistics
print(f"\n--- Reconstruction Error Statistics ---")
print(f"q_proj: Mean={np.mean(q_errors):.6f}, Std={np.std(q_errors):.6f}")
print(f"v_proj: Mean={np.mean(v_errors):.6f}, Std={np.std(v_errors):.6f}")
print(f"Early Layers: Mean={np.mean(early_errors):.6f}, Std={np.std(early_errors):.6f}")
print(f"Middle Layers: Mean={np.mean(middle_errors):.6f}, Std={np.std(middle_errors):.6f}")
print(f"Later Layers: Mean={np.mean(later_errors):.6f}, Std={np.std(later_errors):.6f}")
# Print detailed layer-wise errors
print("\n--- Per-Layer Reconstruction Errors ---")
for file, layers in layerwise_errors.items():
print(f"Adapter File: {file}")
for layer, error in layers.items():
print(f" {layer}: Reconstruction Error = {error:.6f}")
avg_file_error = np.mean(list(layers.values()))
print(f" Average Error for {file}: {avg_file_error:.6f}\n")
def main():
input_files = ["adapters.safetensors", "adapters2.safetensors","adapters3.safetensors","adapters4.safetensors","adapters5.safetensors"]
adapters = load_safetensors(input_files)
rank = 8
compressed = compress_adapters(adapters, rank)
compressed_file = "compressed_adapters.safetensors"
save_compressed_adapters(compressed, compressed_file)
evaluate_compression(adapters, compressed_file)
if __name__ == "__main__":
main()