forked from Soumya-Kushwaha/SoundScape
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Spectogram.py
118 lines (99 loc) · 3.42 KB
/
Spectogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import PySimpleGUI as sg
import pyaudio
import numpy as np
import scipy.signal
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
""" RealTime Audio Spectrogram plot """
# VARS CONSTS:
_VARS = {"window": False, "stream": False, "audioData": np.array([])}
# pysimpleGUI INIT:
AppFont = "Any 16"
sg.theme("DarkBlue3")
layout = [
[
sg.Graph(
canvas_size=(500, 500),
graph_bottom_left=(-2, -2),
graph_top_right=(102, 102),
background_color="#809AB6",
key="graph",
)
],
[sg.ProgressBar(4000, orientation="h", size=(20, 20), key="-PROG-")],
[
sg.Button("Listen", font=AppFont),
sg.Button("Stop", font=AppFont, disabled=True),
sg.Button("Exit", font=AppFont),
],
]
_VARS["window"] = sg.Window(
"Mic to spectrogram plot + Max Level", layout, finalize=True
)
graph = _VARS["window"]["graph"]
# INIT vars:
CHUNK = 1024 # Samples: 1024, 512, 256, 128
RATE = 44100 # Equivalent to Human Hearing at 40 kHz
INTERVAL = 1 # Sampling Interval in Seconds -> Interval to listen
TIMEOUT = 10 # In ms for the event loop
pAud = pyaudio.PyAudio()
# FUNCTIONS:
# PySimpleGUI plots:
def draw_figure(canvas, figure):
figure_canvas_agg = FigureCanvasTkAgg(figure, canvas)
figure_canvas_agg.draw()
figure_canvas_agg.get_tk_widget().pack(side="top", fill="both", expand=1)
return figure_canvas_agg
# pyaudio stream:
def stop():
if _VARS["stream"]:
_VARS["stream"].stop_stream()
_VARS["stream"].close()
_VARS["window"]["-PROG-"].update(0)
_VARS["window"]["Stop"].Update(disabled=True)
_VARS["window"]["Listen"].Update(disabled=False)
# callback:
def callback(in_data, frame_count, time_info, status):
_VARS["audioData"] = np.frombuffer(in_data, dtype=np.int16)
return (in_data, pyaudio.paContinue)
def listen():
_VARS["window"]["Stop"].Update(disabled=False)
_VARS["window"]["Listen"].Update(disabled=True)
_VARS["stream"] = pAud.open(
format=pyaudio.paInt16,
channels=1,
rate=RATE,
input=True,
frames_per_buffer=CHUNK,
stream_callback=callback,
)
_VARS["stream"].start_stream()
# INIT:
fig, ax = plt.subplots() # create a figure and an axis object
fig_agg = draw_figure(graph.TKCanvas, fig) # draw the figure on the graph
# MAIN LOOP
while True:
event, values = _VARS["window"].read(timeout=TIMEOUT)
if event == sg.WIN_CLOSED or event == "Exit":
stop()
pAud.terminate()
break
if event == "Listen":
listen()
if event == "Stop":
stop()
# Along with the global audioData variable, this
# bit updates the spectrogram plot
elif _VARS["audioData"].size != 0:
# Update volume meter
_VARS["window"]["-PROG-"].update(np.amax(_VARS["audioData"]))
# Compute spectrogram
f, t, Sxx = scipy.signal.spectrogram(_VARS["audioData"], fs=RATE)
# Plot spectrogram
ax.clear() # clear the previous plot
ax.pcolormesh(
t, f, Sxx, shading="gouraud"
) # plot the spectrogram as a colored mesh
ax.set_ylabel("Frequency [Hz]") # set the y-axis label
ax.set_xlabel("Time [sec]") # set the x-axis label
fig_agg.draw() # redraw the figure