forked from pytorch/torchtitan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllama3_350m.toml
75 lines (63 loc) · 1.79 KB
/
llama3_350m.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# torchtitan Config.toml
[job]
dump_folder = "/nfs/h100/raid/chem/checkpoints"
description = "Llama 3.2 training"
use_for_integration_test = false
[profiling]
enable_profiling = false
save_traces_folder = "profile_trace"
profile_freq = 10
enable_memory_snapshot = false
save_memory_snapshot_folder = "memory_snapshot"
[metrics]
log_freq = 1
enable_color_printing = true
enable_aim = false
save_aim_folder = "aim"
[model]
name = "llama3"
flavor = "350M"
norm_type = "rmsnorm" # layernorm / np_layernorm / rmsnorm / compiled_rmsnorm / fused_rmsnorm
tokenizer_path = "torchtitan/tokenizers/Llama-3.2-chem-1B-v1/"
[optimizer]
name = "AdamW"
lr = 4e-4
[training]
batch_size = 2
gradient_accumulation_steps = 16
seq_len = 2048
max_norm = 1.0 # grad norm clipping
warmup_steps = 500 # lr scheduler warm up, normally 20% of the train steps
steps = 80000
decay_steps_perc = 0.1
num_decays = 1
data_parallel_degree = -1
tensor_parallel_degree = 1
compile = true
dataset = "chemlactica_train"
data_processing_style = "chemlactica_style"
representation_type = "SMILES"
[validation]
valid_freq = 2000
enable_valid = true
dataset = "chemlactica_valid" # supported datasets: chemlactica_valid_mini
[dataloader]
num_workers = 2
[experimental]
pipeline_parallel_degree = 1
enable_async_tensor_parallel = false
[checkpoint]
enable_checkpoint = true
save_folder = "yerevann/Llama-3.2-350M"
# load_folder = "yerevann/Llama-3.2-350M"
# load_at_step = 0
interval_type = "steps"
interval = 2000
model_weights_only = false
export_dtype = "float32"
async_mode = "async_with_pinned_mem" # ["disabled", "async", "async_with_pinned_mem"]
[activation_checkpoint]
mode = 'none' # ['none', 'selective', 'full']
selective_ac_option = '2' # 'int' = ac every positive int layer or 'op', ac based on ops policy
[float8]
enable_float8_linear = false