-
Notifications
You must be signed in to change notification settings - Fork 0
/
viz.py
182 lines (140 loc) · 7.94 KB
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from __future__ import print_function, absolute_import, division
import time
import argparse
import numpy as np
import os.path as path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from progress.bar import Bar
from common.utils import AverageMeter
from common.data_utils import read_3d_data, create_2d_data
from common.generators import PoseGenerator
from common.loss import mpjpe, p_mpjpe
from common.camera import camera_to_world, image_coordinates
from common.visualization import render_animation
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch training script')
# General arguments
parser.add_argument('-d', '--dataset', default='h36m', type=str, metavar='NAME', help='target dataset')
parser.add_argument('--evaluate', default='', type=str, metavar='FILENAME', required=True,
help='checkpoint to evaluate (file name)')
# Model arguments
parser.add_argument('-a', '--architecture', default='pose_gtac', type=str, metavar='NAME',
help='architecture of the model')
parser.add_argument('-b', '--batch_size', default=64, type=int, metavar='N',
help='batch size in terms of predicted frames')
parser.add_argument('--num_workers', default=8, type=int, metavar='N', help='num of workers for data loading')
parser.add_argument('--num_layers', default=4, type=int, metavar='N', help='num of residual layers')
parser.add_argument('--hid_dim', default=128, type=int, metavar='N', help='num of hidden dimensions')
parser.add_argument('--dropout', default=0.0, type=float, help='dropout rate')
# Visualization
parser.add_argument('--viz_subject', type=str, metavar='STR', help='subject to render')
parser.add_argument('--viz_action', type=str, metavar='STR', help='action to render')
parser.add_argument('--viz_camera', type=int, default=0, metavar='N', help='camera to render')
parser.add_argument('--viz_video', type=str, default=None, metavar='PATH', help='path to input video')
parser.add_argument('--viz_skip', type=int, default=0, metavar='N', help='skip first N frames of input video')
parser.add_argument('--viz_output', type=str, metavar='PATH', help='output file name (.gif or .mp4)')
parser.add_argument('--viz_bitrate', type=int, default=3000, metavar='N', help='bitrate for mp4 videos')
parser.add_argument('--viz_limit', type=int, default=-1, metavar='N', help='only render first N frames')
parser.add_argument('--viz_downsample', type=int, default=1, metavar='N', help='downsample FPS by a factor N')
parser.add_argument('--viz_size', type=int, default=5, metavar='N', help='image size')
args = parser.parse_args()
return args
def main(args):
print('==> Using settings {}'.format(args))
print('==> Loading dataset...')
dataset_path = path.join('data', 'data_3d_' + args.dataset + '.npz')
if args.dataset == 'h36m':
from common.h36m_dataset import Human36mDataset
dataset = Human36mDataset(dataset_path)
else:
raise KeyError('Invalid dataset')
print('==> Preparing data...')
dataset = read_3d_data(dataset)
print('==> Loading 2D detections...')
keypoints = create_2d_data(path.join('data', 'data_2d_' + args.dataset + '.npz'), dataset)
cudnn.benchmark = True
device = torch.device("cuda")
# Create model
print("==> Creating model...")
if args.architecture == 'pose_gtac':
from models.pose_gtac import PoseGTAC
from common.graph_utils import adj_mx_from_skeleton
p_dropout = (None if args.dropout == 0.0 else args.dropout)
model_pos = PoseGTAC(args.hid_dim, p_dropout=p_dropout).to(device)
else:
raise KeyError('Invalid model architecture')
print("==> Total parameters: {:.2f}M".format(sum(p.numel() for p in model_pos.parameters()) / 1000000.0))
# Resume from a checkpoint
ckpt_path = args.evaluate
if path.isfile(ckpt_path):
print("==> Loading checkpoint '{}'".format(ckpt_path))
ckpt = torch.load(ckpt_path)
start_epoch = ckpt['epoch']
error_best = ckpt['error']
model_pos.load_state_dict(ckpt['state_dict'])
print("==> Loaded checkpoint (Epoch: {} | Error: {})".format(start_epoch, error_best))
else:
raise RuntimeError("==> No checkpoint found at '{}'".format(ckpt_path))
print('==> Rendering...')
poses_2d = keypoints[args.viz_subject][args.viz_action]
out_poses_2d = poses_2d[args.viz_camera]
out_actions = [args.viz_camera] * out_poses_2d.shape[0]
poses_3d = dataset[args.viz_subject][args.viz_action]['positions_3d']
assert len(poses_3d) == len(poses_2d), 'Camera count mismatch'
out_poses_3d = poses_3d[args.viz_camera]
ground_truth = dataset[args.viz_subject][args.viz_action]['positions_3d'][args.viz_camera].copy()
input_keypoints = out_poses_2d.copy()
render_loader = DataLoader(PoseGenerator([out_poses_3d], [out_poses_2d], [out_actions]), batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers, pin_memory=True)
prediction = evaluate(render_loader, model_pos, device, args.architecture)[0]
# Invert camera transformation
cam = dataset.cameras()[args.viz_subject][args.viz_camera]
prediction = camera_to_world(prediction, R=cam['orientation'], t=0)
prediction[:, :, 2] -= np.min(prediction[:, :, 2])
ground_truth = camera_to_world(ground_truth, R=cam['orientation'], t=0)
ground_truth[:, :, 2] -= np.min(ground_truth[:, :, 2])
anim_output = {'Regression': prediction, 'Ground truth': ground_truth}
input_keypoints = image_coordinates(input_keypoints[..., :2], w=cam['res_w'], h=cam['res_h'])
render_animation(input_keypoints, anim_output, dataset.skeleton(), dataset.fps(), args.viz_bitrate, cam['azimuth'],
args.viz_output, limit=args.viz_limit, downsample=args.viz_downsample, size=args.viz_size,
input_video_path=args.viz_video, viewport=(cam['res_w'], cam['res_h']),
input_video_skip=args.viz_skip)
def evaluate(data_loader, model_pos, device, architecture):
batch_time = AverageMeter()
data_time = AverageMeter()
epoch_loss_3d_pos = AverageMeter()
epoch_loss_3d_pos_procrustes = AverageMeter()
predictions = []
# Switch to evaluate mode
torch.set_grad_enabled(False)
model_pos.eval()
end = time.time()
bar = Bar('Eval ', max=len(data_loader))
for i, (targets_3d, inputs_2d, _) in enumerate(data_loader):
# Measure data loading time
data_time.update(time.time() - end)
num_poses = targets_3d.size(0)
inputs_2d = inputs_2d.to(device)
if architecture == 'linear':
outputs_3d = model_pos(inputs_2d.view(num_poses, -1)).view(num_poses, -1, 3).cpu()
outputs_3d = torch.cat([torch.zeros(num_poses, 1, outputs_3d.size(2)), outputs_3d], 1) # Pad hip joint
else:
outputs_3d = model_pos(inputs_2d).cpu()
outputs_3d[:, :, :] -= outputs_3d[:, :1, :] # Zero-centre the root (hip)
predictions.append(outputs_3d.numpy())
epoch_loss_3d_pos.update(mpjpe(outputs_3d, targets_3d).item() * 1000.0, num_poses)
epoch_loss_3d_pos_procrustes.update(p_mpjpe(outputs_3d.numpy(), targets_3d.numpy()).item() * 1000.0, num_poses)
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
bar.suffix = '({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {ttl:} | ETA: {eta:} ' \
'| MPJPE: {e1: .4f} | P-MPJPE: {e2: .4f}' \
.format(batch=i + 1, size=len(data_loader), data=data_time.val, bt=batch_time.avg,
ttl=bar.elapsed_td, eta=bar.eta_td, e1=epoch_loss_3d_pos.avg, e2=epoch_loss_3d_pos_procrustes.avg)
bar.next()
bar.finish()
return np.concatenate(predictions), epoch_loss_3d_pos.avg, epoch_loss_3d_pos_procrustes.avg
if __name__ == '__main__':
main(parse_args())