forked from ChrisRackauckas/TBEEF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
95 lines (74 loc) · 2.73 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
################### Select Models ##################
models = [
#['basicFM','FM','Basic',['2']],
#['bmt','FM','BasicMovieTag',['2']],
#['amt','FM','AdjustedMovieTag',['2']]
#['nn', 'FM', 'NearestNeighbor',['2']]
#['rmt','FM','RelatedMovieTag',['2']]
#['basicSVD','SVD','Basic',[]]
['ImplicitFeedbackSVD','SVD','ImplicitFeedback',[]]
#['NeighborhoodMovieTag', 'SVD' , 'Neighborhood' , ['MovieTag']]
]
# Defining models:
# Each element is a list:
# [tag,program,setting,misc]
# tag is the name of the model
# program specifies which program to use
# setting defines which features will be used
# Misc depends on the program:
# For FM: [dims]
# For SVDFeature: []
ensembleModels = [['OLSR', 'OLS', []],
['OLSI','OLSI',['2']],
['RR' ,'RR',['2']],
['BRT','BRT',[]],
['BMAR','BMAR',[]],
#['RFR' ,'RFR' ,[]], # Large memory requirement
['Lasso', 'Lasso', []]
#['GBRT','GBRT',['10']]
]
# Defining ensemble models:
# Each element is a list:
# [tag,modelType,misc]
# tag is the name of the model
# modelType defines what model to use
# misc is the arguments to the program
synthModel = ['GBRT','GBRT',['10']]
################### Select Parts ##################
LAPTOP_TEST = True # uses small data set to run features on laptop
TRIALS = 1
PRE_PROCESS = True
# ---- ---- PreProcess Selection ---- ---- #
TEST_SUBSET = True # uses small data set
### Baidu Specific Preprocess ###
PROCESS_TAGS = False # generates new file for movie tag feature
PROCESS_SOCIAL = True # cuts out all the extra social users not in data set
PROCESS_HISTORY = True
### End Baidu Specific ####
DE_EFFECT = False # If De-effect is false, intermittent predictions are correct
# ---- ---- ---- ---- ----- ---- ---- ---- #
SETUP_MODELS = True
RUN_MODELS = True
SETUP_HYBRID = False
RUN_HYBRID = False
SETUP_SYNTHESIZE = False
RUN_SYNTHESIZE = False
POST_PROCESS = False
################## Select Bootstrap Parameters ##################
BOOTSTRAP_SPLITS = [.8, .8, .8]
################## Timer ##############
TIME_RUN = False
################## Factorization Machines ##########
FM_ITER = 40
FM_STR_ITER = str(FM_ITER)
FM_INIT_STD = '.3'
################## SVD Feature #####################
SVD_LEARNING_RATE = '.005'
SVD_REGULARIZATION_ITEM = '.004'
SVD_REGULARIZATION_USER = '.004'
SVD_REGULARIZATION_GLOBAL = '.001'
SVD_REGULARIZATION_FEEDBACK = '.004'
SVD_NUM_FACTOR = '64'
SVD_ACTIVE_TYPE = '0'
SVD_NUM_ITER = '40'
################## Hybrid #########################