-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBikedata_ST.m
187 lines (140 loc) · 3.78 KB
/
Bikedata_ST.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
function Bikedata(filename)
close all;
Fs = 10; % Visually inspecting the oscilloscope
%filename = 'Bike_1.csv'
SENS_DATA = importdata(filename);
parsedata = SENS_DATA.data;
dlen = length(parsedata(:,1));
fdel = 1;
edel = 1;
SENS_DATA = parsedata(fdel*Fs:dlen-edel*Fs,:);
% SENS_DATA = parsedata(1:timedel*Fs,:);
Accel_X = SENS_DATA(:,1);
Accel_Y = SENS_DATA(:,2);
Accel_Z = SENS_DATA(:,3);
% Remove DC Power
accel = [Accel_X Accel_Y Accel_Z];
% Time length of signal
sigtime = length(Accel_X)/Fs
powX = bandpower(Accel_X); % Find the power contained between 30 and 40s of Acceleration data after removing 20s noise.
powY = bandpower(Accel_Y);
powZ = bandpower(Accel_Z);
powers = [powX powY powZ];
ptot = sum(powers);
[~,powidx] = max(powers);
npowX = bandpower(Accel_X(1:11*Fs));
npowY = bandpower(Accel_Y(1:11*Fs));
npowZ = bandpower(Accel_Z(1:11*Fs));
% % Remove the signal with the least power.
% % This may be redundant considering weighting.
%
% switch powidx
% case 1
%
% Accel_X(:) = 0;
% disp('X has lowest power')
% case 2
% Accel_Y(:) = 0;
% powY = 0;
% disp('Y has lowest power')
% case 3
% Accel_Z(:) = 0;
% disp('Z has lowest power')
% end
%
switch powidx % for using with max(powers)
case 1
data = Accel_X;
case 2
data = Accel_Y;
case 3
data = Accel_Z;
end
% Columns of correspond to following
% X
% Y
% Z
%
% Value1 = Accel_X(1)
% Accel_X = double(bitcmp(uint16(Accel_X)+1,'uint16'))/8192.0;
% Accel_Y = double(bitcmp(uint16(Accel_Y)+1,'uint16'))/8192.0;
% Accel_Z = double(bitcmp(uint16(Accel_Z)+1,'uint16'))/8192.0;
X_weight = 3*powX/ptot;
Y_weight = 3*powY/ptot;
Z_weight = 3*powZ/ptot;
t = linspace(0,length(Accel_X)/Fs,length(Accel_X));
length(t);
figure;
subplot(211);
plot(t,Accel_X,'b');
hold on;
plot(t,Accel_Y,'m');
plot(t,Accel_Z,'r');
xlabel('Time (sec)');
ylabel('User Acceleration (m/s^2)');
title('Cadence of Bike User');
%data = sqrt((Z_weight.*Accel_Z).^2+(Y_weight.*Accel_Y).^2+(X_weight.*Accel_X).^2);
%data = Accel_X;
data = data-mean(data);% subtract DC value
plot(t,data,'g','linewidth',1);
hold off;
legend('X','Y','Z','Selected');
% Unfiltered Data
fftlength = 2^nextpow2(length(data));
L = length(data);
fdata = fft(data, fftlength) / L;
ctr = (fftlength / 2) + 1;
faxis = 60*(Fs / 2) .* linspace(0,1, ctr); % multiply by 60 for RPM vs RPS
mag = abs(fdata(1:ctr));
[~,idx] = max(mag);
%fftcdnc = faxis(idx)
% Plot Unfiltered Data
subplot(212);
plot(faxis,mag); hold on;
title('FFT of Weighted Averaged Data');
xlabel('Frequency (RPM)');
ylabel('Magnitude');
% Filtered Data
cutfreq = [.25 4.99];
[b,a] = butter(4,cutfreq./(Fs./2));
lpf = filter(b,a,data);
bdata = fft(lpf,fftlength) / L;
[~,idx] = max(abs(bdata(1:ctr)));
% bdata(idx) = 0;
fftcadence = faxis(idx)
plot(faxis,abs(bdata(1:ctr)),'linewidth',1);
legend('unfilt','butter LPF'); hold off;
% windlen = floor(length(lpf)/10);
windt = 4;
windlen = floor(windt*Fs);
nlap= [];
nfft=2^nextpow2(windlen+1000);
wind = hamming(windlen);
figure;
subplot 121;
spectrogram(lpf,wind,nlap,nfft,Fs,'yaxis');hold on;
% disp({'Data Length',length(lpf)})
% colorbar;
% view(2);
[s,f,t,pxx]=spectrogram(lpf,wind,nlap,nfft,Fs,'yaxis');
% whos s
title('Spectrogram');
[~,I] = max(pxx); % largest PSD in each column (STFT).
cadot = 60*f(I); %cadence over time
cadlen = length(cadot);
% cadot = [cadot;cadot(cadlen)];
subplot 122;
x = linspace(0,sigtime,cadlen)/60;
stairs(x,cadot,'linewidth',2);
grid on;
title('Discrete Cadence Over Time');
xlabel('Time (mins)');
ylabel('Cadence (RPM)');
%plot(t,f(I),'r','linewidth',1); hold off;
% avgcadence = mean(cadot)
% save output over time to .csv file
fname = strsplit(filename,'.csv');
newfilename = sprintf('%speaks.csv',fname{1});
q = [x;cadot'];
csvwrite(newfilename,q);
end