forked from kaist-dmlab/Hi-COVIDNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
86 lines (68 loc) · 3.69 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.nn.utils as torch_utils
from tqdm.notebook import tqdm
import pickle
import copy
import pathlib
import matplotlib.pyplot as plt
from covid_aux import COVID_AUX_Net, train_COVID_AUX_Net, GlobalRNN, train_globalrnn
import os
os.environ['CUDA_VISIBLE_DEVICES']= '5'
countries_Korea_inbound = pickle.load(open("pickled_ds/countries_Korea_inbound_window14_google.pkl", "rb"))
test_data_model2 = pickle.load(open("pickled_ds/data_model2_normal_window14_google_test.pkl", "rb"))
test_data_model2 = [test_data_model2]
test_data_AUX = pickle.load(open("pickled_ds/data_AUX_normal_window14_google_test.pkl", "rb"))
test_data_AUX = [test_data_AUX]
test_target_continent = pickle.load(open("pickled_ds/target_continent_normal_window14_google_test.pkl", "rb"))
test_target_continent = np.expand_dims(test_target_continent, axis=0)
test_target_total = pickle.load(open("pickled_ds/target_total_normal_window14_google_test.pkl", "rb"))
test_target_total = np.expand_dims(test_target_total, axis=0)
root = pathlib.PosixPath("models_grid_search/tm_14days_full")
model = COVID_AUX_Net(countries_Korea_inbound, feature_len=10, aux_len=3, hidden_size=4, is_tm = True, output_size=14,)
model_list = [model]
fnames = ["model.pt"]
for i in range(len(model_list)):
print(i+1,"th model loading")
state = torch.load(root/fnames[i])
model_list[i].load_state_dict(state)
model_list[i].to(torch.device("cuda"))
model_list[i].eval()
criterion = nn.MSELoss()
alpha = .5
Valid_Loss, RMSE_Loss = [],[]
continents_ouputs = []
outputs = []
models_rmse = []
for j in range(len(model_list)):
with torch.no_grad():
for i in range(len(test_data_model2)):
continent_patients_pred, total_patients_pred = model_list[j](test_data_model2[i], test_data_AUX[i])
target_continent_i = torch.as_tensor(test_target_continent[i], dtype=torch.float)
target_total_i = torch.as_tensor(test_target_total[i], dtype=torch.float).unsqueeze(0)
target_continent_i[torch.isnan(target_continent_i)] = 0
target_continent_i[torch.isinf(target_continent_i)] = 0
target_total_i[torch.isnan(target_total_i)] = 0
target_total_i[torch.isinf(target_total_i)] = 0
# continent_patients_pred : (6,14)
loss1 = criterion(continent_patients_pred, target_continent_i.cuda().transpose(1,0).contiguous())
loss2 = criterion(total_patients_pred, target_total_i.cuda().squeeze())
valid_loss = loss1*alpha + loss2*(1-alpha)
Valid_Loss.append(valid_loss.item())
RMSE_Loss.append(torch.sqrt(loss2))
continents_ouputs.append(continent_patients_pred) #(6,14)
outputs.append(total_patients_pred)
avg_rmse_loss = sum(RMSE_Loss[-len(test_data_model2):])/len(test_data_model2)
print("RMSE is ",avg_rmse_loss.item())
models_rmse.append(avg_rmse_loss)
continent_mean, continent_std = pickle.load(open("pickled_ds/target_continent_mean_std_window14.pkl", "rb"))
total_mean, total_std = pickle.load(open("pickled_ds/target_total_mean_std_window14.pkl", "rb"))
print("The predicted number of imported cases by Hi-COVIDNet daily basis: \n", outputs[0].cpu().numpy()*total_std+total_mean)
print("The true number of imported cases daily basis: \n", test_target_total[0]*total_std+total_mean)
print()
print("The predicted number of continent-wise cases by Hi-COVIDNet: \n", continents_ouputs[0].transpose(1,0).cpu().numpy()*continent_std+continent_mean)
print("The true number of continent-wise: \n", test_target_continent[0]*continent_std+continent_mean)