-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinfer_qvhighlights.py
191 lines (149 loc) · 6.8 KB
/
infer_qvhighlights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import argparse
import os
from typing import List
from tqdm import tqdm
import numpy as np
import torch
import sentence_transformers
from sentence_transformers import SentenceTransformer
from standalone_eval.file_utils import load_jsonl, save_jsonl
class VTG_GPT:
def __init__(self, num_bins=10, top_k=8, gap=6, nms_threshold=0.95):
self.num_bins = num_bins
self.top_k = top_k
self.gap = gap
self.nms_threshold = nms_threshold
self.similarity_model = SentenceTransformer('paraphrase-distilroberta-base-v2')
@torch.no_grad()
def locate_span(self, qid, vid, query, caption_list, rephrased_query_list, gt_span_list=None):
normalized_scores = self.get_normalized_scores(query, caption_list)
span_list = self.get_span(
normalized_scores,
num_bins=self.num_bins,
top_k=self.top_k,
gap=self.gap,
)
for rephrased_query in rephrased_query_list:
rephrased_normalized_scores = self.get_normalized_scores(rephrased_query, caption_list)
normalized_scores += rephrased_normalized_scores
rephrased_span_list = self.get_span(
rephrased_normalized_scores,
num_bins=self.num_bins,
top_k=self.top_k,
gap=self.gap,
)
span_list.extend(rephrased_span_list)
span_list.sort(key=lambda x: x[2], reverse=True)
normalized_scores /= len(rephrased_query_list) + 1
if self.nms_threshold > 0:
span_list = self.nms(span_list, self.nms_threshold)
res = {
"qid": qid,
"query": query,
"vid": vid,
"relevant_windows": gt_span_list,
"pred_relevant_windows": [[s[0]*2, (s[1]+1)*2, s[2]] for s in span_list],
"span_index_list": span_list,
"pred_saliency_scores": normalized_scores.tolist(),
}
return res
def get_normalized_scores(self, query: str, caption_list: List[str]):
embed_query = self.similarity_model.encode(query, convert_to_tensor=True)
embed_caption_list = self.similarity_model.encode(caption_list, convert_to_tensor=True)
cos_value = sentence_transformers.util.pytorch_cos_sim(embed_query, embed_caption_list)[0]
cos_value = cos_value.cpu().numpy()
def normalize(value): return (value - value.min()) / (value.max() - value.min())
normalized_scores = normalize(cos_value)
return normalized_scores
def get_span(self, scores: np.ndarray, num_bins: int, top_k: int, gap: int):
# compute histogram, dividing the range into 10 equal parts
counts, thresholds = np.histogram(scores, bins=num_bins, range=(0, 1))
# get dynamic threshold
threshold = 0
for i in range(len(counts)-1, -1, -1):
total_num = sum(counts[i:])
if total_num >= top_k:
threshold = thresholds[i]
break
top_k_moments = np.where(scores > threshold)[0]
proposal_list = [[top_k_moments[0]]]
for moment in top_k_moments[1:]:
if moment - proposal_list[-1][-1] <= gap:
proposal_list[-1].append(moment)
else:
proposal_list.append([moment])
# TODO optimize span_scores
all_len = sum([len(p) for p in proposal_list])
len_scores = [len(p) / all_len for p in proposal_list]
proposal_scores = [np.mean(scores[p]) for p in proposal_list]
len_weight = 0.5
score_weight = 0.5
span_scores = [len_weight * len_scores[i] + proposal_scores[i] * score_weight
for i in range(len(proposal_list))]
span_list = []
for i in range(len(proposal_list)):
span_list.append([min(proposal_list[i]), max(proposal_list[i]), span_scores[i]])
span_list.sort(key=lambda x: x[2], reverse=True)
return span_list
def iou(self, span1, span2):
start1, end1, _ = span1
start2, end2, _ = span2
# compute intersection
inter_start = max(start1, start2)
inter_end = min(end1, end2)
inter = max(0, inter_end - inter_start)
# compute union
union = (end1 - start1) + (end2 - start2) - inter
return inter / union if union != 0 else 0
def nms(self, span_list, iou_threshold):
# Sort by score in descending order
span_list = sorted(span_list, key=lambda x: x[2], reverse=True)
keep = []
while span_list:
highest_score_span = span_list.pop(0)
keep.append(highest_score_span)
span_list = [span for span in span_list if self.iou(highest_score_span, span) < iou_threshold]
return keep
def main(args):
# load model
model = VTG_GPT(
num_bins=args.num_bins,
top_k=args.top_k,
gap=args.gap,
nms_threshold=0.95,
)
# dir & path
caption_dir = f"data/qvhighlights/caption/{args.data_split}"
annotation_path = f"data/qvhighlights/query/{args.data_split}.jsonl"
output_path = f"outputs/qvhighlights/infer_{args.data_split}.jsonl"
# load files
annotation = load_jsonl(annotation_path)
res_list = []
print(output_path)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
for i, item in tqdm(enumerate(annotation), desc="Processing"):
qid = item["qid"]
vid = item["vid"]
query = item["query"]
gt_span_list = item["relevant_windows"] if "relevant_windows" in item else None
rephrased_query_list = item["rephrased_query"]
caption = load_jsonl(os.path.join(caption_dir, f"{vid}.jsonl"))
caption_list = [c["description"] for c in caption]
res_dict = model.locate_span(qid, vid, query, caption_list, rephrased_query_list, gt_span_list)
res_list.append(res_dict)
if i == 5 and args.debug:
save_jsonl(res_list, output_path.replace("infer", "debug"))
return
save_jsonl(res_list, output_path)
def parse_arguments():
parser = argparse.ArgumentParser(description="Inference for qvhighlights dataset using VTG-GPT.")
parser.add_argument("data_split", choices=["train", "val", "test"], help="qvhighlights dataset split: train, val, or test")
parser.add_argument('--debug', action='store_true', help='Enable debug mode')
parser.add_argument('--num_bins', default=10, type=int, help='Number of histogram bins')
parser.add_argument('--top_k', default=8, type=int, help='Use top k moments to compute dynamic threshold')
parser.add_argument('--gap', default=6, type=int, help='Maximum gap between two moments in a span')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_arguments()
main(args)