-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
225 lines (178 loc) · 7.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
from __future__ import absolute_import, division, print_function
import os
import hashlib
import zipfile
import yacs
import numpy as np
import torch
from six.moves import urllib
from matplotlib.cm import get_cmap
from matplotlib import cm
from matplotlib.colors import ListedColormap
def is_numpy(data):
"""Checks if data is a numpy array."""
return isinstance(data, np.ndarray)
def is_tensor(data):
"""Checks if data is a torch tensor."""
return type(data) == torch.Tensor
def is_tuple(data):
"""Checks if data is a tuple."""
return isinstance(data, tuple)
def is_list(data):
"""Checks if data is a list."""
return isinstance(data, list)
def is_dict(data):
"""Checks if data is a dictionary."""
return isinstance(data, dict)
def is_str(data):
"""Checks if data is a string."""
return isinstance(data, str)
def is_int(data):
"""Checks if data is an integer."""
return isinstance(data, int)
def is_seq(data):
"""Checks if data is a list or tuple."""
return is_tuple(data) or is_list(data)
def is_cfg(data):
"""Checks if data is a configuration node"""
return type(data) == yacs.config.CfgNode
def viz_inv_depth(inv_depth, normalizer=None, percentile=95,
colormap='plasma', filter_zeros=False):
"""
Converts an inverse depth map to a colormap for visualization.
Parameters
----------
inv_depth : torch.Tensor [B,1,H,W]
Inverse depth map to be converted
normalizer : float
Value for inverse depth map normalization
percentile : float
Percentile value for automatic normalization
colormap : str
Colormap to be used
filter_zeros : bool
If True, do not consider zero values during normalization
Returns
-------
colormap : np.array [H,W,3]
Colormap generated from the inverse depth map
"""
# If a tensor is provided, convert to numpy
if is_tensor(inv_depth):
# Squeeze if depth channel exists
if len(inv_depth.shape) == 3:
inv_depth = inv_depth.squeeze(0)
inv_depth = inv_depth.detach().cpu().numpy()
cm = get_cmap(colormap)
if normalizer is None:
normalizer = np.percentile(
inv_depth[inv_depth > 0] if filter_zeros else inv_depth, percentile)
inv_depth /= (normalizer + 1e-6)
return cm(np.clip(inv_depth, 0., 1.0))[:, :, :3]
def high_res_colormap(low_res_cmap, resolution=1000, max_value=1):
# Construct the list colormap, with interpolated values for higher resolution
# For a linear segmented colormap, you can just specify the number of point in
# cm.get_cmap(name, lutsize) with the parameter lutsize
x = np.linspace(0, 1, low_res_cmap.N)
low_res = low_res_cmap(x)
new_x = np.linspace(0, max_value, resolution)
high_res = np.stack([np.interp(new_x, x, low_res[:, i]) for i in range(low_res.shape[1])], axis=1)
return ListedColormap(high_res)
def tensor2array(tensor, colormap='magma'):
# Support only preceptually uniform sequential colormaps
# https://matplotlib.org/examples/color/colormaps_reference.html
COLORMAPS = dict(plasma=cm.get_cmap('plasma', 10000),
magma=high_res_colormap(cm.get_cmap('magma')),
viridis=cm.get_cmap('viridis', 10000))
norm_array = normalize_image(tensor).detach().cpu()
array = COLORMAPS[colormap](norm_array).astype(np.float32)
return array.transpose(2, 0, 1)
def readlines(filename):
"""Read all the lines in a text file and return as a list
"""
with open(filename, 'r') as f:
lines = f.read().splitlines()
return lines
def normalize_image(x):
"""Rescale image pixels to span range [0, 1]
"""
ma = float(x.max().cpu().data)
mi = float(x.min().cpu().data)
d = ma - mi if ma != mi else 1e5
return (x - mi) / d
def sec_to_hm(t):
"""Convert time in seconds to time in hours, minutes and seconds
e.g. 10239 -> (2, 50, 39)
"""
t = int(t)
s = t % 60
t //= 60
m = t % 60
t //= 60
return t, m, s
def sec_to_hm_str(t):
"""Convert time in seconds to a nice string
e.g. 10239 -> '02h50m39s'
"""
h, m, s = sec_to_hm(t)
return "{:02d}h{:02d}m{:02d}s".format(h, m, s)
def download_model_if_doesnt_exist(model_name):
"""If pretrained kitti model doesn't exist, download and unzip it
"""
# values are tuples of (<google cloud URL>, <md5 checksum>)
download_paths = {
"mono_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono_640x192.zip",
"a964b8356e08a02d009609d9e3928f7c"),
"stereo_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/stereo_640x192.zip",
"3dfb76bcff0786e4ec07ac00f658dd07"),
"mono+stereo_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono%2Bstereo_640x192.zip",
"c024d69012485ed05d7eaa9617a96b81"),
"mono_no_pt_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono_no_pt_640x192.zip",
"9c2f071e35027c895a4728358ffc913a"),
"stereo_no_pt_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/stereo_no_pt_640x192.zip",
"41ec2de112905f85541ac33a854742d1"),
"mono+stereo_no_pt_640x192":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono%2Bstereo_no_pt_640x192.zip",
"46c3b824f541d143a45c37df65fbab0a"),
"mono_1024x320":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono_1024x320.zip",
"0ab0766efdfeea89a0d9ea8ba90e1e63"),
"stereo_1024x320":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/stereo_1024x320.zip",
"afc2f2126d70cf3fdf26b550898b501a"),
"mono+stereo_1024x320":
("https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono%2Bstereo_1024x320.zip",
"cdc5fc9b23513c07d5b19235d9ef08f7"),
}
if not os.path.exists("models"):
os.makedirs("models")
model_path = os.path.join("models", model_name)
def check_file_matches_md5(checksum, fpath):
if not os.path.exists(fpath):
return False
with open(fpath, 'rb') as f:
current_md5checksum = hashlib.md5(f.read()).hexdigest()
return current_md5checksum == checksum
# see if we have the model already downloaded...
if not os.path.exists(os.path.join(model_path, "encoder.pth")):
model_url, required_md5checksum = download_paths[model_name]
if not check_file_matches_md5(required_md5checksum, model_path + ".zip"):
print("-> Downloading pretrained model to {}".format(model_path + ".zip"))
urllib.request.urlretrieve(model_url, model_path + ".zip")
if not check_file_matches_md5(required_md5checksum, model_path + ".zip"):
print(" Failed to download a file which matches the checksum - quitting")
quit()
print(" Unzipping model...")
with zipfile.ZipFile(model_path + ".zip", 'r') as f:
f.extractall(model_path)
print(" Model unzipped to {}".format(model_path))