forked from tarun005/FLAVR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyutils.py
71 lines (58 loc) · 2.17 KB
/
myutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# from https://github.com/myungsub/CAIN/blob/master/utils.py,
# but removed the errenous normalization and quantization steps from computing the PSNR.
from pytorch_msssim import ssim_matlab as calc_ssim
import math
import os
import torch
import shutil
def init_meters(loss_str):
losses = init_losses(loss_str)
psnrs = AverageMeter()
ssims = AverageMeter()
return losses, psnrs, ssims
def eval_metrics(output, gt, psnrs, ssims):
# PSNR should be calculated for each image, since sum(log) =/= log(sum).
for b in range(gt.size(0)):
psnr = calc_psnr(output[b], gt[b])
psnrs.update(psnr)
ssim = calc_ssim(output[b].unsqueeze(0).clamp(0,1), gt[b].unsqueeze(0).clamp(0,1) , val_range=1.)
ssims.update(ssim)
def init_losses(loss_str):
loss_specifics = {}
loss_list = loss_str.split('+')
for l in loss_list:
_, loss_type = l.split('*')
loss_specifics[loss_type] = AverageMeter()
loss_specifics['total'] = AverageMeter()
return loss_specifics
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def calc_psnr(pred, gt):
diff = (pred - gt).pow(2).mean() + 1e-8
return -10 * math.log10(diff)
def save_checkpoint(state, directory, is_best, exp_name, filename='checkpoint.pth'):
"""Saves checkpoint to disk"""
if not os.path.exists(directory):
os.makedirs(directory)
filename = os.path.join(directory , filename)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join(directory , 'model_best.pth'))
def log_tensorboard(writer, loss, psnr, ssim, lpips, lr, timestep, mode='train'):
writer.add_scalar('Loss/%s/%s' % mode, loss, timestep)
writer.add_scalar('PSNR/%s' % mode, psnr, timestep)
writer.add_scalar('SSIM/%s' % mode, ssim, timestep)
if mode == 'train':
writer.add_scalar('lr', lr, timestep)