-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
215 lines (187 loc) · 7.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import os
import sys
import numpy as np
import tqdm
import torch.nn.functional as F
import matplotlib.pyplot as plt
from unet_plus import SE_Res101UNet
from torch.autograd import Variable
from config import cfg
from lib.net.generateNet import generate_net
import torch.optim as optim
from PIL import Image
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from lib.net.loss import MaskLoss
from lib.net.sync_batchnorm.replicate import patch_replication_callback
from dataset import DataSet
from tensorboardX import SummaryWriter
from lib.net.refinenet import refinenet
esp = 1e-8
torch.backends.cudnn.benchmark = True
def train_net():
train_cumtom_dataset = DataSet(pharse='train',cfg=cfg)
train_dataloader = DataLoader(dataset=train_cumtom_dataset,
shuffle=True,
batch_size=cfg.TRAIN_BATCHES,
num_workers=cfg.DATA_WORKERS)
val_cumtom_dataset = DataSet(pharse='val',cfg=cfg)
val_dataloader = DataLoader(dataset=val_cumtom_dataset,
shuffle=False,
batch_size=cfg.TEST_BATCHES,
num_workers=cfg.DATA_WORKERS)
print('train dataset : {} ,with batch size :{}'.format(len(train_cumtom_dataset),cfg.TRAIN_BATCHES))
print('val dataset : {} ,with batch size :{}'.format(len(val_cumtom_dataset), cfg.TEST_BATCHES))
# net = generate_net(cfg)
net = SE_Res101UNet(pretrained=None)
print('Use %d GPU'%cfg.TRAIN_GPUS)
device = torch.device(0)
if cfg.TRAIN_GPUS > 1:
net = nn.DataParallel(net)
patch_replication_callback(net)
net.to(device)
if cfg.TRAIN_CKPT:
print('load checkpoint from : {}'.format(cfg.TRAIN_CKPT))
pretrained_dict = torch.load(cfg.TRAIN_CKPT)
net_dict = net.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if (k in net_dict) and (v.shape==net_dict[k].shape)}
net_dict.update(pretrained_dict)
net.load_state_dict(net_dict)
criterion = MaskLoss()
optimizer = optim.SGD(
lr=cfg.TRAIN_LR,
params = net.parameters(),
momentum=cfg.TRAIN_MOMENTUM,
weight_decay=cfg.TRAIN_WEIGHT_DECAY
)
running_loss = 0.0
tblogger = SummaryWriter()
for epoch in range(cfg.TRAIN_MINEPOCH, cfg.TRAIN_EPOCHS):
now_lr = adjust_lr(optimizer, epoch)
avaliable_unions = [esp for _ in range(cfg.MODEL_NUM_CLASSES)]
avaliable_insections = [0.0 for _ in range(cfg.MODEL_NUM_CLASSES)]
for i, data in enumerate(train_dataloader):
img, mask = data
optimizer.zero_grad()
img = Variable(img).float().cuda()
mask = Variable(mask).long().cuda()
output = net(img)
# print(output.shape)
loss = criterion(output, mask)
compute_iou(output,mask,avaliable_unions,avaliable_insections)
loss.backward()
optimizer.step()
cur_loss = loss.item()
running_loss += cur_loss
if i!=0 and i % cfg.PRINT_FRE == 0:
print('epoch:{}/{}\tbatch:{}/{}\tlr:{:.6f}\tloss:{:.6f}\tBsmoke:{:.6f}\tCorn:{:.6f}\tBrice:{:.6f}\tBG:{:.6f}'.format(
epoch, cfg.TRAIN_EPOCHS, i, len(train_dataloader),
now_lr, running_loss/(i+1) , avaliable_insections[1]/avaliable_unions[1], avaliable_insections[2]/avaliable_unions[2]
, avaliable_insections[3] / avaliable_unions[3],avaliable_insections[0]/avaliable_unions[0]))
tblogger.add_scalars('loss', {'train':running_loss / len(train_dataloader)}, epoch )
tblogger.add_scalars('bg', {'train':avaliable_insections[0]/avaliable_unions[0]}, epoch )
tblogger.add_scalars('Bsmoke', {'train':avaliable_insections[1]/avaliable_unions[1]}, epoch )
tblogger.add_scalars('Corn', {'train':avaliable_insections[2]/avaliable_unions[2]}, epoch )
tblogger.add_scalars('Brice', {'train':avaliable_insections[3]/avaliable_unions[3]}, epoch )
running_loss = 0.0
if epoch != 0 and epoch % cfg.SAVE_FRE == 0:
save_path = os.path.join(cfg.MODEL_SAVE_DIR,'%s_%s_%s_epoch%d.pth'%(cfg.MODEL_NAME,cfg.MODEL_BACKBONE,cfg.DATA_NAME,epoch))
torch.save(net.state_dict(), save_path)
print('%s has been saved'%save_path)
print('evalution at epoch {}'.format(epoch))
net.eval()
eval(net,val_dataloader,criterion,tblogger,epoch)
net.train()
save_path = os.path.join(cfg.MODEL_SAVE_DIR,'%s_%s_%s_epoch%d_all.pth'%(cfg.MODEL_NAME,cfg.MODEL_BACKBONE,cfg.DATA_NAME,cfg.TRAIN_EPOCHS))
torch.save(net.state_dict(),save_path)
if cfg.TRAIN_TBLOG:
tblogger.close()
print('%s has been saved'%save_path)
print('train finished!')
def eval(net,dataloader,criterion,logger,epoch):
val_unions = [esp for _ in range(cfg.MODEL_NUM_CLASSES)]
val_insections = [0.0 for _ in range(cfg.MODEL_NUM_CLASSES)]
val_loss = 0.0
with torch.no_grad():
for i ,data in tqdm.tqdm(enumerate(dataloader)):
img, mask = data
img = Variable(img).float().cuda()
mask = Variable(mask).long().cuda()
output = net(img)
loss = criterion(output, mask)
compute_iou(output,mask,val_unions,val_insections)
val_loss += loss.item()
logger.add_scalars('loss', {'val':val_loss/len(dataloader)}, epoch)
logger.add_scalars('bg', {'val':val_insections[0]/val_unions[0]}, epoch )
logger.add_scalars('Bsmoke', {'val':val_insections[1]/val_unions[1]}, epoch)
logger.add_scalars('Corn', {'val':val_insections[2]/val_unions[2]},epoch)
logger.add_scalars('Brice', {'val':val_insections[3]/val_unions[3]}, epoch )
print('loss:{:.6f}\tBsmoke:{:.6f}\tCorn:{:.6f}\tBrice:{:.6f}\tBG:{:.6f}'.format(
val_loss/len(dataloader), val_insections[1] / val_unions[1], val_insections[2] / val_unions[2]
, val_insections[3] / val_unions[3],val_insections[0] / val_unions[0]))
def compute_iou(output,mask,unions,insections,num = cfg.MODEL_NUM_CLASSES):
# 0 is background
B,C,H,W = output.shape
output = torch.argmax(output,dim = 1)#.cpu().numpy()
output = output.view(B, 1, H, W)
outputs = torch.LongTensor(B, C, H, W).zero_().cuda()
outputs = outputs.scatter_(1,output,1.)
masks = torch.LongTensor(B, C, H, W).zero_().cuda()
masks = masks.scatter_(1, mask, 1.)
assert masks.shape == outputs.shape
batch_insections = torch.sum(outputs * masks,dim = (0,2,3))
batch_unions = torch.sum(outputs,dim=(0,2,3)) + torch.sum(masks,dim = (0,2,3)) - batch_insections
for i in range(0,num):
unions[i] += batch_unions[i].item()
insections[i] += batch_insections[i].item()
# for i in range(1,num):#class
#
# target_i = target[:, i].detach().cpu().numpy()
# out_put_i = output[:, i].detach().cpu().numpy()
# insection_i = target_i * out_put_i
# union_i = target_i + out_put_i - insection_i
#
# out_put_i = out_put_i.sum(axis = (1,2))
# target_i = target_i.sum(axis = (1,2))
# insection_i = insection_i.sum(axis = (1,2))
# union_i = union_i.sum(axis = (1,2))
# # print(out_put_i,target_i,insections,unions,sep='\n')
# for j in range(n):
# # if target_i[j] == 0:continue
# # else:
# # counts[i] = counts[i] + 1
# # ious[i] += insections[j]/unions[j]
# #另一种计算方式
# unions[i] += union_i[j]
# insections[i] += insection_i[j]
def adjust_lr(optimizer, epoch, max_epoch = cfg.TRAIN_EPOCHS):
now_lr = cfg.TRAIN_LR * (1 - epoch/(max_epoch+1)) ** cfg.TRAIN_POWER
optimizer.param_groups[0]['lr'] = now_lr
# optimizer.param_groups[1]['lr'] = now_lr * 10
return now_lr
def weights_init(m):
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight.data)
nn.init.xavier_normal_(m.bias.data)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight,1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight,1)
nn.init.constant_(m.bias, 0)
def get_params(model, key):
for m in model.named_modules():
if key == '1x':
if 'backbone' in m[0] and isinstance(m[1], nn.Conv2d):
for p in m[1].parameters():
yield p
elif key == '10x':
if 'backbone' not in m[0] and isinstance(m[1], nn.Conv2d):
for p in m[1].parameters():
yield p
if __name__ == '__main__':
train_net()