This repository has been archived by the owner on Feb 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactivation.py
99 lines (72 loc) · 1.85 KB
/
activation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
class Activation:
"""Interface regrouping methods of activation function"""
@staticmethod
def f(x):
raise NotImplemented()
@staticmethod
def derivative(x):
raise NotImplemented()
class Sigmoid(Activation):
"""
Sigmoid function.
Ref: https://en.wikipedia.org/wiki/Sigmoid_function
"""
@staticmethod
def f(x):
return 1 / (1 + np.exp(-x))
@staticmethod
def derivative(x):
return Sigmoid.f(x) * (1 - Sigmoid.f(x))
class Softmax(Activation):
"""
Softmax function.
Ref: https://en.wikipedia.org/wiki/Softmax_function
"""
@staticmethod
def f(x):
shift_x = np.exp(x - x.max(axis=1)[:, np.newaxis])
return shift_x / shift_x.sum(axis=1)[:, np.newaxis]
@staticmethod
def derivative(x):
return Softmax.f(x) * (1 - Softmax.f(x))
class ReLU(Activation):
"""
RELU activation function
Ref: https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
"""
@staticmethod
def f(x):
return np.maximum(x, 0)
@staticmethod
def derivative(x):
return (x > 0).astype(int)
class Softplus(Activation):
"""
Softplus activation function
Ref: https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
"""
@staticmethod
def f(x):
return np.log(1 + np.exp(x))
@staticmethod
def derivative(x):
return Sigmoid.f(x)
class Tanh(Activation):
"""
Softplus activation function
Ref: https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
"""
@staticmethod
def f(x):
return np.tanh(x)
@staticmethod
def derivative(x):
return 1 - np.square(np.tanh(x))
class Identity(Activation):
@staticmethod
def f(x):
return x
@staticmethod
def derivative(x):
return np.ones(x.shape)