You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
run python3 inference.py test_sample/test_market.jpg --dataset market --model resnet50
RuntimeError: Error(s) in loading state_dict for ResNet50_nFC:
Missing key(s) in state_dict: "class_0.classifier.1.weight", "class_0.classifier.1.bias", "class_0.classifier.1.running_mean", "class_0.classifier.1.running_var", "class_0.classifier.4.weight", "class_0.classifier.4.bias", "class_1.classifier.1.weight", "class_1.classifier.1.bias", "class_1.classifier.1.running_mean", "class_1.classifier.1.running_var", "class_1.classifier.4.weight", "class_1.classifier.4.bias", "class_2.classifier.1.weight", "class_2.classifier.1.bias", "class_2.classifier.1.running_mean", "class_2.classifier.1.running_var", "class_2.classifier.4.weight", "class_2.classifier.4.bias", "class_3.classifier.1.weight", "class_3.classifier.1.bias", "class_3.classifier.1.running_mean", "class_3.classifier.1.running_var", "class_3.classifier.4.weight", "class_3.classifier.4.bias", "class_4.classifier.1.weight", "class_4.classifier.1.bias", "class_4.classifier.1.running_mean", "class_4.classifier.1.running_var", "class_4.classifier.4.weight", "class_4.classifier.4.bias", "class_5.classifier.1.weight", "class_5.classifier.1.bias", "class_5.classifier.1.running_mean", "class_5.classifier.1.running_var", "class_5.classifier.4.weight", "class_5.classifier.4.bias", "class_6.classifier.1.weight", "class_6.classifier.1.bias", "class_6.classifier.1.running_mean", "class_6.classifier.1.running_var", "class_6.classifier.4.weight", "class_6.classifier.4.bias", "class_7.classifier.1.weight", "class_7.classifier.1.bias", "class_7.classifier.1.running_mean", "class_7.classifier.1.running_var", "class_7.classifier.4.weight", "class_7.classifier.4.bias", "class_8.classifier.1.weight", "class_8.classifier.1.bias", "class_8.classifier.1.running_mean", "class_8.classifier.1.running_var", "class_8.classifier.4.weight", "class_8.classifier.4.bias", "class_9.classifier.1.weight", "class_9.classifier.1.bias", "class_9.classifier.1.running_mean", "class_9.classifier.1.running_var", "class_9.classifier.4.weight", "class_9.classifier.4.bias", "class_10.classifier.1.weight", "class_10.classifier.1.bias", "class_10.classifier.1.running_mean", "class_10.classifier.1.running_var", "class_10.classifier.4.weight", "class_10.classifier.4.bias", "class_11.classifier.1.weight", "class_11.classifier.1.bias", "class_11.classifier.1.running_mean", "class_11.classifier.1.running_var", "class_11.classifier.4.weight", "class_11.classifier.4.bias", "class_12.classifier.1.weight", "class_12.classifier.1.bias", "class_12.classifier.1.running_mean", "class_12.classifier.1.running_var", "class_12.classifier.4.weight", "class_12.classifier.4.bias", "class_13.classifier.1.weight", "class_13.classifier.1.bias", "class_13.classifier.1.running_mean", "class_13.classifier.1.running_var", "class_13.classifier.4.weight", "class_13.classifier.4.bias", "class_14.classifier.1.weight", "class_14.classifier.1.bias", "class_14.classifier.1.running_mean", "class_14.classifier.1.running_var", "class_14.classifier.4.weight", "class_14.classifier.4.bias", "class_15.classifier.1.weight", "class_15.classifier.1.bias", "class_15.classifier.1.running_mean", "class_15.classifier.1.running_var", "class_15.classifier.4.weight", "class_15.classifier.4.bias", "class_16.classifier.1.weight", "class_16.classifier.1.bias", "class_16.classifier.1.running_mean", "class_16.classifier.1.running_var", "class_16.classifier.4.weight", "class_16.classifier.4.bias", "class_17.classifier.1.weight", "class_17.classifier.1.bias", "class_17.classifier.1.running_mean", "class_17.classifier.1.running_var", "class_17.classifier.4.weight", "class_17.classifier.4.bias", "class_18.classifier.1.weight", "class_18.classifier.1.bias", "class_18.classifier.1.running_mean", "class_18.classifier.1.running_var", "class_18.classifier.4.weight", "class_18.classifier.4.bias", "class_19.classifier.1.weight", "class_19.classifier.1.bias", "class_19.classifier.1.running_mean", "class_19.classifier.1.running_var", "class_19.classifier.4.weight", "class_19.classifier.4.bias", "class_20.classifier.1.weight", "class_20.classifier.1.bias", "class_20.classifier.1.running_mean", "class_20.classifier.1.running_var", "class_20.classifier.4.weight", "class_20.classifier.4.bias", "class_21.classifier.1.weight", "class_21.classifier.1.bias", "class_21.classifier.1.running_mean", "class_21.classifier.1.running_var", "class_21.classifier.4.weight", "class_21.classifier.4.bias", "class_22.classifier.1.weight", "class_22.classifier.1.bias", "class_22.classifier.1.running_mean", "class_22.classifier.1.running_var", "class_22.classifier.4.weight", "class_22.classifier.4.bias", "class_23.classifier.0.weight", "class_23.classifier.0.bias", "class_23.classifier.1.weight", "class_23.classifier.1.bias", "class_23.classifier.1.running_mean", "class_23.classifier.1.running_var", "class_23.classifier.4.weight", "class_23.classifier.4.bias", "class_24.classifier.0.weight", "class_24.classifier.0.bias", "class_24.classifier.1.weight", "class_24.classifier.1.bias", "class_24.classifier.1.running_mean", "class_24.classifier.1.running_var", "class_24.classifier.4.weight", "class_24.classifier.4.bias", "class_25.classifier.0.weight", "class_25.classifier.0.bias", "class_25.classifier.1.weight", "class_25.classifier.1.bias", "class_25.classifier.1.running_mean", "class_25.classifier.1.running_var", "class_25.classifier.4.weight", "class_25.classifier.4.bias", "class_26.classifier.0.weight", "class_26.classifier.0.bias", "class_26.classifier.1.weight", "class_26.classifier.1.bias", "class_26.classifier.1.running_mean", "class_26.classifier.1.running_var", "class_26.classifier.4.weight", "class_26.classifier.4.bias", "class_27.classifier.0.weight", "class_27.classifier.0.bias", "class_27.classifier.1.weight", "class_27.classifier.1.bias", "class_27.classifier.1.running_mean", "class_27.classifier.1.running_var", "class_27.classifier.4.weight", "class_27.classifier.4.bias", "class_28.classifier.0.weight", "class_28.classifier.0.bias",
"class_28.classifier.1.weight", "class_28.classifier.1.bias", "class_28.classifier.1.running_mean", "class_28.classifier.1.running_var", "class_28.classifier.4.weight", "class_28.classifier.4.bias", "class_29.classifier.0.weight", "class_29.classifier.0.bias", "class_29.classifier.1.weight", "class_29.classifier.1.bias", "class_29.classifier.1.running_mean", "class_29.classifier.1.running_var", "class_29.classifier.4.weight", "class_29.classifier.4.bias".
Unexpected key(s) in state_dict: "class_0.add_block.0.weight", "class_0.add_block.0.bias", "class_0.add_block.1.weight", "class_0.add_block.1.bias", "class_0.add_block.1.running_mean", "class_0.add_block.1.running_var", "class_0.add_block.1.num_batches_tracked", "class_1.add_block.0.weight", "class_1.add_block.0.bias", "class_1.add_block.1.weight", "class_1.add_block.1.bias", "class_1.add_block.1.running_mean", "class_1.add_block.1.running_var", "class_1.add_block.1.num_batches_tracked", "class_2.add_block.0.weight", "class_2.add_block.0.bias", "class_2.add_block.1.weight", "class_2.add_block.1.bias", "class_2.add_block.1.running_mean", "class_2.add_block.1.running_var", "class_2.add_block.1.num_batches_tracked", "class_3.add_block.0.weight", "class_3.add_block.0.bias", "class_3.add_block.1.weight", "class_3.add_block.1.bias", "class_3.add_block.1.running_mean", "class_3.add_block.1.running_var", "class_3.add_block.1.num_batches_tracked", "class_4.add_block.0.weight", "class_4.add_block.0.bias", "class_4.add_block.1.weight", "class_4.add_block.1.bias", "class_4.add_block.1.running_mean", "class_4.add_block.1.running_var", "class_4.add_block.1.num_batches_tracked", "class_5.add_block.0.weight", "class_5.add_block.0.bias", "class_5.add_block.1.weight", "class_5.add_block.1.bias", "class_5.add_block.1.running_mean", "class_5.add_block.1.running_var", "class_5.add_block.1.num_batches_tracked", "class_6.add_block.0.weight", "class_6.add_block.0.bias", "class_6.add_block.1.weight", "class_6.add_block.1.bias", "class_6.add_block.1.running_mean", "class_6.add_block.1.running_var", "class_6.add_block.1.num_batches_tracked", "class_7.add_block.0.weight", "class_7.add_block.0.bias", "class_7.add_block.1.weight", "class_7.add_block.1.bias", "class_7.add_block.1.running_mean", "class_7.add_block.1.running_var", "class_7.add_block.1.num_batches_tracked", "class_8.add_block.0.weight", "class_8.add_block.0.bias", "class_8.add_block.1.weight", "class_8.add_block.1.bias", "class_8.add_block.1.running_mean", "class_8.add_block.1.running_var", "class_8.add_block.1.num_batches_tracked", "class_9.add_block.0.weight", "class_9.add_block.0.bias", "class_9.add_block.1.weight", "class_9.add_block.1.bias", "class_9.add_block.1.running_mean", "class_9.add_block.1.running_var", "class_9.add_block.1.num_batches_tracked", "class_10.add_block.0.weight", "class_10.add_block.0.bias", "class_10.add_block.1.weight", "class_10.add_block.1.bias", "class_10.add_block.1.running_mean", "class_10.add_block.1.running_var", "class_10.add_block.1.num_batches_tracked", "class_11.add_block.0.weight", "class_11.add_block.0.bias", "class_11.add_block.1.weight", "class_11.add_block.1.bias", "class_11.add_block.1.running_mean", "class_11.add_block.1.running_var", "class_11.add_block.1.num_batches_tracked", "class_12.add_block.0.weight", "class_12.add_block.0.bias", "class_12.add_block.1.weight", "class_12.add_block.1.bias", "class_12.add_block.1.running_mean", "class_12.add_block.1.running_var", "class_12.add_block.1.num_batches_tracked", "class_13.add_block.0.weight", "class_13.add_block.0.bias", "class_13.add_block.1.weight", "class_13.add_block.1.bias", "class_13.add_block.1.running_mean", "class_13.add_block.1.running_var", "class_13.add_block.1.num_batches_tracked", "class_14.add_block.0.weight", "class_14.add_block.0.bias", "class_14.add_block.1.weight", "class_14.add_block.1.bias", "class_14.add_block.1.running_mean", "class_14.add_block.1.running_var", "class_14.add_block.1.num_batches_tracked", "class_15.add_block.0.weight", "class_15.add_block.0.bias", "class_15.add_block.1.weight", "class_15.add_block.1.bias", "class_15.add_block.1.running_mean", "class_15.add_block.1.running_var", "class_15.add_block.1.num_batches_tracked", "class_16.add_block.0.weight", "class_16.add_block.0.bias", "class_16.add_block.1.weight", "class_16.add_block.1.bias", "class_16.add_block.1.running_mean", "class_16.add_block.1.running_var", "class_16.add_block.1.num_batches_tracked", "class_17.add_block.0.weight", "class_17.add_block.0.bias", "class_17.add_block.1.weight", "class_17.add_block.1.bias", "class_17.add_block.1.running_mean", "class_17.add_block.1.running_var", "class_17.add_block.1.num_batches_tracked", "class_18.add_block.0.weight", "class_18.add_block.0.bias", "class_18.add_block.1.weight", "class_18.add_block.1.bias", "class_18.add_block.1.running_mean", "class_18.add_block.1.running_var", "class_18.add_block.1.num_batches_tracked", "class_19.add_block.0.weight", "class_19.add_block.0.bias", "class_19.add_block.1.weight", "class_19.add_block.1.bias", "class_19.add_block.1.running_mean", "class_19.add_block.1.running_var", "class_19.add_block.1.num_batches_tracked", "class_20.add_block.0.weight", "class_20.add_block.0.bias", "class_20.add_block.1.weight", "class_20.add_block.1.bias", "class_20.add_block.1.running_mean", "class_20.add_block.1.running_var", "class_20.add_block.1.num_batches_tracked", "class_21.add_block.0.weight", "class_21.add_block.0.bias", "class_21.add_block.1.weight", "class_21.add_block.1.bias", "class_21.add_block.1.running_mean", "class_21.add_block.1.running_var", "class_21.add_block.1.num_batches_tracked", "class_22.add_block.0.weight", "class_22.add_block.0.bias", "class_22.add_block.1.weight", "class_22.add_block.1.bias", "class_22.add_block.1.running_mean", "class_22.add_block.1.running_var", "class_22.add_block.1.num_batches_tracked".
size mismatch for class_0.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_0.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_1.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_1.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_2.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_2.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_3.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_3.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_4.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_4.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_5.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_5.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_6.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_6.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_7.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_7.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_8.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_8.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_9.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_9.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_10.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_10.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_11.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_11.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_12.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_12.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_13.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_13.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_14.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_14.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_15.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_15.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_16.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_16.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_17.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_17.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_18.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_18.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_19.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_19.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_20.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_20.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_21.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_21.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_22.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_22.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
The text was updated successfully, but these errors were encountered:
run python3 inference.py test_sample/test_market.jpg --dataset market --model resnet50
RuntimeError: Error(s) in loading state_dict for ResNet50_nFC:
Missing key(s) in state_dict: "class_0.classifier.1.weight", "class_0.classifier.1.bias", "class_0.classifier.1.running_mean", "class_0.classifier.1.running_var", "class_0.classifier.4.weight", "class_0.classifier.4.bias", "class_1.classifier.1.weight", "class_1.classifier.1.bias", "class_1.classifier.1.running_mean", "class_1.classifier.1.running_var", "class_1.classifier.4.weight", "class_1.classifier.4.bias", "class_2.classifier.1.weight", "class_2.classifier.1.bias", "class_2.classifier.1.running_mean", "class_2.classifier.1.running_var", "class_2.classifier.4.weight", "class_2.classifier.4.bias", "class_3.classifier.1.weight", "class_3.classifier.1.bias", "class_3.classifier.1.running_mean", "class_3.classifier.1.running_var", "class_3.classifier.4.weight", "class_3.classifier.4.bias", "class_4.classifier.1.weight", "class_4.classifier.1.bias", "class_4.classifier.1.running_mean", "class_4.classifier.1.running_var", "class_4.classifier.4.weight", "class_4.classifier.4.bias", "class_5.classifier.1.weight", "class_5.classifier.1.bias", "class_5.classifier.1.running_mean", "class_5.classifier.1.running_var", "class_5.classifier.4.weight", "class_5.classifier.4.bias", "class_6.classifier.1.weight", "class_6.classifier.1.bias", "class_6.classifier.1.running_mean", "class_6.classifier.1.running_var", "class_6.classifier.4.weight", "class_6.classifier.4.bias", "class_7.classifier.1.weight", "class_7.classifier.1.bias", "class_7.classifier.1.running_mean", "class_7.classifier.1.running_var", "class_7.classifier.4.weight", "class_7.classifier.4.bias", "class_8.classifier.1.weight", "class_8.classifier.1.bias", "class_8.classifier.1.running_mean", "class_8.classifier.1.running_var", "class_8.classifier.4.weight", "class_8.classifier.4.bias", "class_9.classifier.1.weight", "class_9.classifier.1.bias", "class_9.classifier.1.running_mean", "class_9.classifier.1.running_var", "class_9.classifier.4.weight", "class_9.classifier.4.bias", "class_10.classifier.1.weight", "class_10.classifier.1.bias", "class_10.classifier.1.running_mean", "class_10.classifier.1.running_var", "class_10.classifier.4.weight", "class_10.classifier.4.bias", "class_11.classifier.1.weight", "class_11.classifier.1.bias", "class_11.classifier.1.running_mean", "class_11.classifier.1.running_var", "class_11.classifier.4.weight", "class_11.classifier.4.bias", "class_12.classifier.1.weight", "class_12.classifier.1.bias", "class_12.classifier.1.running_mean", "class_12.classifier.1.running_var", "class_12.classifier.4.weight", "class_12.classifier.4.bias", "class_13.classifier.1.weight", "class_13.classifier.1.bias", "class_13.classifier.1.running_mean", "class_13.classifier.1.running_var", "class_13.classifier.4.weight", "class_13.classifier.4.bias", "class_14.classifier.1.weight", "class_14.classifier.1.bias", "class_14.classifier.1.running_mean", "class_14.classifier.1.running_var", "class_14.classifier.4.weight", "class_14.classifier.4.bias", "class_15.classifier.1.weight", "class_15.classifier.1.bias", "class_15.classifier.1.running_mean", "class_15.classifier.1.running_var", "class_15.classifier.4.weight", "class_15.classifier.4.bias", "class_16.classifier.1.weight", "class_16.classifier.1.bias", "class_16.classifier.1.running_mean", "class_16.classifier.1.running_var", "class_16.classifier.4.weight", "class_16.classifier.4.bias", "class_17.classifier.1.weight", "class_17.classifier.1.bias", "class_17.classifier.1.running_mean", "class_17.classifier.1.running_var", "class_17.classifier.4.weight", "class_17.classifier.4.bias", "class_18.classifier.1.weight", "class_18.classifier.1.bias", "class_18.classifier.1.running_mean", "class_18.classifier.1.running_var", "class_18.classifier.4.weight", "class_18.classifier.4.bias", "class_19.classifier.1.weight", "class_19.classifier.1.bias", "class_19.classifier.1.running_mean", "class_19.classifier.1.running_var", "class_19.classifier.4.weight", "class_19.classifier.4.bias", "class_20.classifier.1.weight", "class_20.classifier.1.bias", "class_20.classifier.1.running_mean", "class_20.classifier.1.running_var", "class_20.classifier.4.weight", "class_20.classifier.4.bias", "class_21.classifier.1.weight", "class_21.classifier.1.bias", "class_21.classifier.1.running_mean", "class_21.classifier.1.running_var", "class_21.classifier.4.weight", "class_21.classifier.4.bias", "class_22.classifier.1.weight", "class_22.classifier.1.bias", "class_22.classifier.1.running_mean", "class_22.classifier.1.running_var", "class_22.classifier.4.weight", "class_22.classifier.4.bias", "class_23.classifier.0.weight", "class_23.classifier.0.bias", "class_23.classifier.1.weight", "class_23.classifier.1.bias", "class_23.classifier.1.running_mean", "class_23.classifier.1.running_var", "class_23.classifier.4.weight", "class_23.classifier.4.bias", "class_24.classifier.0.weight", "class_24.classifier.0.bias", "class_24.classifier.1.weight", "class_24.classifier.1.bias", "class_24.classifier.1.running_mean", "class_24.classifier.1.running_var", "class_24.classifier.4.weight", "class_24.classifier.4.bias", "class_25.classifier.0.weight", "class_25.classifier.0.bias", "class_25.classifier.1.weight", "class_25.classifier.1.bias", "class_25.classifier.1.running_mean", "class_25.classifier.1.running_var", "class_25.classifier.4.weight", "class_25.classifier.4.bias", "class_26.classifier.0.weight", "class_26.classifier.0.bias", "class_26.classifier.1.weight", "class_26.classifier.1.bias", "class_26.classifier.1.running_mean", "class_26.classifier.1.running_var", "class_26.classifier.4.weight", "class_26.classifier.4.bias", "class_27.classifier.0.weight", "class_27.classifier.0.bias", "class_27.classifier.1.weight", "class_27.classifier.1.bias", "class_27.classifier.1.running_mean", "class_27.classifier.1.running_var", "class_27.classifier.4.weight", "class_27.classifier.4.bias", "class_28.classifier.0.weight", "class_28.classifier.0.bias",
"class_28.classifier.1.weight", "class_28.classifier.1.bias", "class_28.classifier.1.running_mean", "class_28.classifier.1.running_var", "class_28.classifier.4.weight", "class_28.classifier.4.bias", "class_29.classifier.0.weight", "class_29.classifier.0.bias", "class_29.classifier.1.weight", "class_29.classifier.1.bias", "class_29.classifier.1.running_mean", "class_29.classifier.1.running_var", "class_29.classifier.4.weight", "class_29.classifier.4.bias".
Unexpected key(s) in state_dict: "class_0.add_block.0.weight", "class_0.add_block.0.bias", "class_0.add_block.1.weight", "class_0.add_block.1.bias", "class_0.add_block.1.running_mean", "class_0.add_block.1.running_var", "class_0.add_block.1.num_batches_tracked", "class_1.add_block.0.weight", "class_1.add_block.0.bias", "class_1.add_block.1.weight", "class_1.add_block.1.bias", "class_1.add_block.1.running_mean", "class_1.add_block.1.running_var", "class_1.add_block.1.num_batches_tracked", "class_2.add_block.0.weight", "class_2.add_block.0.bias", "class_2.add_block.1.weight", "class_2.add_block.1.bias", "class_2.add_block.1.running_mean", "class_2.add_block.1.running_var", "class_2.add_block.1.num_batches_tracked", "class_3.add_block.0.weight", "class_3.add_block.0.bias", "class_3.add_block.1.weight", "class_3.add_block.1.bias", "class_3.add_block.1.running_mean", "class_3.add_block.1.running_var", "class_3.add_block.1.num_batches_tracked", "class_4.add_block.0.weight", "class_4.add_block.0.bias", "class_4.add_block.1.weight", "class_4.add_block.1.bias", "class_4.add_block.1.running_mean", "class_4.add_block.1.running_var", "class_4.add_block.1.num_batches_tracked", "class_5.add_block.0.weight", "class_5.add_block.0.bias", "class_5.add_block.1.weight", "class_5.add_block.1.bias", "class_5.add_block.1.running_mean", "class_5.add_block.1.running_var", "class_5.add_block.1.num_batches_tracked", "class_6.add_block.0.weight", "class_6.add_block.0.bias", "class_6.add_block.1.weight", "class_6.add_block.1.bias", "class_6.add_block.1.running_mean", "class_6.add_block.1.running_var", "class_6.add_block.1.num_batches_tracked", "class_7.add_block.0.weight", "class_7.add_block.0.bias", "class_7.add_block.1.weight", "class_7.add_block.1.bias", "class_7.add_block.1.running_mean", "class_7.add_block.1.running_var", "class_7.add_block.1.num_batches_tracked", "class_8.add_block.0.weight", "class_8.add_block.0.bias", "class_8.add_block.1.weight", "class_8.add_block.1.bias", "class_8.add_block.1.running_mean", "class_8.add_block.1.running_var", "class_8.add_block.1.num_batches_tracked", "class_9.add_block.0.weight", "class_9.add_block.0.bias", "class_9.add_block.1.weight", "class_9.add_block.1.bias", "class_9.add_block.1.running_mean", "class_9.add_block.1.running_var", "class_9.add_block.1.num_batches_tracked", "class_10.add_block.0.weight", "class_10.add_block.0.bias", "class_10.add_block.1.weight", "class_10.add_block.1.bias", "class_10.add_block.1.running_mean", "class_10.add_block.1.running_var", "class_10.add_block.1.num_batches_tracked", "class_11.add_block.0.weight", "class_11.add_block.0.bias", "class_11.add_block.1.weight", "class_11.add_block.1.bias", "class_11.add_block.1.running_mean", "class_11.add_block.1.running_var", "class_11.add_block.1.num_batches_tracked", "class_12.add_block.0.weight", "class_12.add_block.0.bias", "class_12.add_block.1.weight", "class_12.add_block.1.bias", "class_12.add_block.1.running_mean", "class_12.add_block.1.running_var", "class_12.add_block.1.num_batches_tracked", "class_13.add_block.0.weight", "class_13.add_block.0.bias", "class_13.add_block.1.weight", "class_13.add_block.1.bias", "class_13.add_block.1.running_mean", "class_13.add_block.1.running_var", "class_13.add_block.1.num_batches_tracked", "class_14.add_block.0.weight", "class_14.add_block.0.bias", "class_14.add_block.1.weight", "class_14.add_block.1.bias", "class_14.add_block.1.running_mean", "class_14.add_block.1.running_var", "class_14.add_block.1.num_batches_tracked", "class_15.add_block.0.weight", "class_15.add_block.0.bias", "class_15.add_block.1.weight", "class_15.add_block.1.bias", "class_15.add_block.1.running_mean", "class_15.add_block.1.running_var", "class_15.add_block.1.num_batches_tracked", "class_16.add_block.0.weight", "class_16.add_block.0.bias", "class_16.add_block.1.weight", "class_16.add_block.1.bias", "class_16.add_block.1.running_mean", "class_16.add_block.1.running_var", "class_16.add_block.1.num_batches_tracked", "class_17.add_block.0.weight", "class_17.add_block.0.bias", "class_17.add_block.1.weight", "class_17.add_block.1.bias", "class_17.add_block.1.running_mean", "class_17.add_block.1.running_var", "class_17.add_block.1.num_batches_tracked", "class_18.add_block.0.weight", "class_18.add_block.0.bias", "class_18.add_block.1.weight", "class_18.add_block.1.bias", "class_18.add_block.1.running_mean", "class_18.add_block.1.running_var", "class_18.add_block.1.num_batches_tracked", "class_19.add_block.0.weight", "class_19.add_block.0.bias", "class_19.add_block.1.weight", "class_19.add_block.1.bias", "class_19.add_block.1.running_mean", "class_19.add_block.1.running_var", "class_19.add_block.1.num_batches_tracked", "class_20.add_block.0.weight", "class_20.add_block.0.bias", "class_20.add_block.1.weight", "class_20.add_block.1.bias", "class_20.add_block.1.running_mean", "class_20.add_block.1.running_var", "class_20.add_block.1.num_batches_tracked", "class_21.add_block.0.weight", "class_21.add_block.0.bias", "class_21.add_block.1.weight", "class_21.add_block.1.bias", "class_21.add_block.1.running_mean", "class_21.add_block.1.running_var", "class_21.add_block.1.num_batches_tracked", "class_22.add_block.0.weight", "class_22.add_block.0.bias", "class_22.add_block.1.weight", "class_22.add_block.1.bias", "class_22.add_block.1.running_mean", "class_22.add_block.1.running_var", "class_22.add_block.1.num_batches_tracked".
size mismatch for class_0.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_0.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_1.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_1.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_2.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_2.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_3.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_3.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_4.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_4.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_5.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_5.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_6.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_6.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_7.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_7.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_8.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_8.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_9.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_9.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in
current model is torch.Size([512]).
size mismatch for class_10.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_10.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_11.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_11.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_12.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_12.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_13.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_13.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_14.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_14.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_15.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_15.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_16.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_16.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_17.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_17.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_18.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_18.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_19.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_19.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_20.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_20.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_21.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_21.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for class_22.classifier.0.weight: copying a param with shape torch.Size([1, 512]) from checkpoint, the shape in current model is torch.Size([512, 2048]).
size mismatch for class_22.classifier.0.bias: copying a param with shape torch.Size([1]) from checkpoint, the shape in current model is torch.Size([512]).
The text was updated successfully, but these errors were encountered: