-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmodel.py
252 lines (218 loc) · 12.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# -*- coding: utf-8 -*-
# import math
import tensorflow as tf
"""
@platform: vim
@author: YunYang1994
@email: [email protected]
"""
class Model(object):
"""
Created on sunday July 15 15:25:45 2018
--> -->
==
"""
def __init__(self, images, labels, embedding_dim,loss_type = 0):
self.images = images
self.labels = labels
self.embedding_dim = embedding_dim
self.loss_type = loss_type
self.embeddings = self.__get_embeddings()
self.pred_prob, self.loss = self.__get_loss()
self.predictions = self.__get_pred()
self.accuracy = self.__get_accuracy()
def __get_embeddings(self):
return self.network(inputs=self.images, embedding_dim=self.embedding_dim)
def __get_loss(self):
if self.loss_type == 0: return self.Original_Softmax_Loss(self.embeddings, self.labels)
if self.loss_type == 1: return self.Modified_Softmax_Loss(self.embeddings, self.labels)
if self.loss_type == 2: return self.Angular_Softmax_Loss( self.embeddings, self.labels)
def __get_pred(self):
return tf.argmax(self.pred_prob, axis=1)
def __get_accuracy(self):
correct_predictions = tf.equal(self.predictions, self.labels)
accuracy = tf.reduce_mean(tf.cast(correct_predictions, 'float'))
return accuracy
@staticmethod
def network(inputs, embedding_dim=2):
def prelu(inputs, name=''):
alpha = tf.get_variable(name, shape=inputs.get_shape(),
initializer=tf.constant_initializer(0.0), dtype=inputs.dtype)
return tf.maximum(alpha*inputs, inputs)
def conv(inputs, filters, kernel_size, strides, w_init, padding='same', suffix='', scope=None):
conv_name = 'conv'+suffix
relu_name = 'relu'+suffix
with tf.name_scope(name=scope):
if w_init == 'xavier': w_init = tf.contrib.layers.xavier_initializer(uniform=True)
if w_init == 'gaussian': w_init = tf.contrib.layers.xavier_initializer(uniform=False)
input_shape = inputs.get_shape().as_list()
net = tf.layers.conv2d(inputs, filters, kernel_size, strides, padding=padding,
kernel_initializer=w_init, name=conv_name)
output_shape=net.get_shape().as_list()
print("=================================================================================")
print("layer:%8s input shape:%8s output shape:%8s" %(conv_name, str(input_shape), str(output_shape)))
print("---------------------------------------------------------------------------------")
net = prelu(net, name=relu_name)
return net
def resnet_block(net, blocks, suffix=''):
n = len(blocks)
for i in range(n):
if n == 2 and i == 0: identity = net
net = conv(inputs=net,
filters=blocks[i]['filters'],
kernel_size=blocks[i]['kernel_size'],
strides=blocks[i]['strides'],
w_init=blocks[i]['w_init'],
padding=blocks[i]['padding'],
suffix=suffix+'_'+blocks[i]['suffix'],
scope='conv'+suffix+'_'+blocks[i]['suffix'])
if n == 3 and i == 0: identity = net
return identity + net
res1_3=[
{'filters':64, 'kernel_size':3, 'strides':2, 'w_init':'xavier', 'padding':'same', 'suffix':'1'},
{'filters':64, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'2'},
{'filters':64, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'3'},
]
res2_3=[
{'filters':128, 'kernel_size':3, 'strides':2, 'w_init':'xavier', 'padding':'same', 'suffix':'1'},
{'filters':128, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'2'},
{'filters':128, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'3'},
]
res2_5=[
{'filters':128, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'4'},
{'filters':128, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'5'},
]
res3_3=[
{'filters':256, 'kernel_size':3, 'strides':2, 'w_init':'xavier', 'padding':'same', 'suffix':'1'},
{'filters':256, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'2'},
{'filters':256, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'3'},
]
res3_5=[
{'filters':256, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'4'},
{'filters':256, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'5'},
]
res3_7=[
{'filters':256, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'6'},
{'filters':256, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'7'},
]
res3_9=[
{'filters':256, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'8'},
{'filters':256, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'9'},
]
res4_3=[
{'filters':512, 'kernel_size':3, 'strides':2, 'w_init':'xavier', 'padding':'same', 'suffix':'1'},
{'filters':512, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'2'},
{'filters':512, 'kernel_size':3, 'strides':1, 'w_init':'gaussian', 'padding':'same', 'suffix':'3'},
]
net = inputs
for suffix, blocks in zip(('1','2','2','3','3','3','3','4'),
(res1_3,res2_3,res2_5,res3_3,res3_5,res3_7,res3_9,res4_3)):
net = resnet_block(net, blocks, suffix=suffix)
net = tf.layers.flatten(net)
embeddings = tf.layers.dense(net, units=embedding_dim, kernel_initializer=tf.contrib.layers.xavier_initializer(uniform=False))
return embeddings
# @staticmethod
# def network(inputs, embedding_dim=2, weight_decay=0.0):
# """
# This is a simple convolutional neural network to extract features from images
# @inputs: images (batch_size, 28, 28, 1); embedding_dim , the num of dimension of embeddings
# @return: embeddings (batch_size, embedding_dim)
# """
# w_init = tf.contrib.layers.xavier_initializer(uniform=False)
# with tf.name_scope('conv1.x'):
# net = tf.layers.conv2d(inputs, 32, [5,5], strides=1, padding='same', kernel_initializer=w_init)
# net = tf.layers.conv2d(net, 32, [5,5], strides=2, padding='same', kernel_initializer=w_init)
# net = tf.nn.relu(net)
# with tf.name_scope('conv2.x'):
# net = tf.layers.conv2d(net, 64, [5,5], strides=1, padding='same', kernel_initializer=w_init)
# net = tf.layers.conv2d(net, 64, [5,5], strides=2, padding='same', kernel_initializer=w_init)
# net = tf.nn.relu(net)
# with tf.name_scope('conv3.x'):
# net = tf.layers.conv2d(net, 128, [5,5], strides=1, padding='same',kernel_initializer=w_init)
# net = tf.layers.conv2d(net, 128, [5,5], strides=2, padding='same',kernel_initializer=w_init)
# net = tf.nn.relu(net)
# net = tf.layers.flatten(net)
# embeddings = tf.layers.dense(net, units=embedding_dim, kernel_initializer=w_init)
# return embeddings
@staticmethod
def Original_Softmax_Loss(embeddings, labels):
"""
This is the orginal softmax loss, nothing to say
"""
with tf.variable_scope("softmax"):
weights = tf.get_variable(name='embedding_weights',
shape=[embeddings.get_shape().as_list()[-1], 10],
initializer=tf.contrib.layers.xavier_initializer())
logits = tf.matmul(embeddings, weights)
pred_prob = tf.nn.softmax(logits=logits) # output probability
# define cross entropy
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
return pred_prob, loss
@staticmethod
def Modified_Softmax_Loss(embeddings, labels):
"""
This kind of loss is slightly different from the orginal softmax loss. the main difference
lies in that the L2-norm of the weights are constrained to 1, then the
decision boundary will only depends on the angle between weights and embeddings.
"""
# # normalize embeddings
# embeddings_norm = tf.norm(embeddings, axis=1, keepdims=True)
# embeddings = tf.div(embeddings, embeddings_norm, name="normalize_embedding")
"""
the abovel commented-out code would lead loss to divergence, maybe you can try it.
"""
with tf.variable_scope("softmax"):
weights = tf.get_variable(name='embedding_weights',
shape=[embeddings.get_shape().as_list()[-1], 10],
initializer=tf.contrib.layers.xavier_initializer())
# normalize weights
weights_norm = tf.norm(weights, axis=0, keepdims=True)
weights = tf.div(weights, weights_norm, name="normalize_weights")
logits = tf.matmul(embeddings, weights)
pred_prob = tf.nn.softmax(logits=logits)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
return pred_prob, loss
@staticmethod
def Angular_Softmax_Loss(embeddings, labels, margin=4):
"""
Note:(about the value of margin)
as for binary-class case, the minimal value of margin is 2+sqrt(3)
as for multi-class case, the minimal value of margin is 3
the value of margin proposed by the author of paper is 4.
here the margin value is 4.
"""
l = 0.
embeddings_norm = tf.norm(embeddings, axis=1)
with tf.variable_scope("softmax"):
weights = tf.get_variable(name='embedding_weights',
shape=[embeddings.get_shape().as_list()[-1], 10],
initializer=tf.contrib.layers.xavier_initializer())
weights = tf.nn.l2_normalize(weights, axis=0)
# cacualting the cos value of angles between embeddings and weights
orgina_logits = tf.matmul(embeddings, weights)
N = embeddings.get_shape()[0] # get batch_size
single_sample_label_index = tf.stack([tf.constant(list(range(N)), tf.int64), labels], axis=1)
# N = 128, labels = [1,0,...,9]
# single_sample_label_index:
# [ [0,1],
# [1,0],
# ....
# [128,9]]
selected_logits = tf.gather_nd(orgina_logits, single_sample_label_index)
cos_theta = tf.div(selected_logits, embeddings_norm)
cos_theta_power = tf.square(cos_theta)
cos_theta_biq = tf.pow(cos_theta, 4)
sign0 = tf.sign(cos_theta)
sign3 = tf.multiply(tf.sign(2*cos_theta_power-1), sign0)
sign4 = 2*sign0 + sign3 -3
result=sign3*(8*cos_theta_biq-8*cos_theta_power+1) + sign4
margin_logits = tf.multiply(result, embeddings_norm)
f = 1.0/(1.0+l)
ff = 1.0 - f
combined_logits = tf.add(orgina_logits, tf.scatter_nd(single_sample_label_index,
tf.subtract(margin_logits, selected_logits),
orgina_logits.get_shape()))
updated_logits = ff*orgina_logits + f*combined_logits
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels,logits=updated_logits))
pred_prob = tf.nn.softmax(logits=updated_logits)
return pred_prob, loss