forked from hwanheelee1993/MFMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_fb.py
238 lines (182 loc) · 8.99 KB
/
infer_fb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import pickle
from copy import copy
from transformers import T5Tokenizer, T5ForConditionalGeneration, default_data_collator, PegasusForConditionalGeneration, AutoTokenizer
from transformers import BartForConditionalGeneration
from tqdm import tqdm
import nltk
import os
import argparse
#from torch.utils.data import Dataset
from datasets import Dataset, load_dataset
from torch.utils.data import DataLoader
import numpy as np
import torch
import pandas as pd
import spacy
nlp = spacy.load("en_core_web_sm")
from copy import copy
import math
def main():
def mask_input_np(org_document, ratio=0.5, is_bart=True):
masked_input, nnc, noun_phrases = generate_sent_input_all(org_document, is_bart=False)
model_input, target = fill_phrases_by_sent(masked_input, noun_phrases, nnc, ratio=ratio, is_bart=is_bart)
return model_input
def mask_input_split(inputs, ratio=0.3, is_bart=True):
inputs_ = inputs.split(' ')
picked_idxs = np.random.choice(list(range(len(inputs_))), int(len(inputs_)*ratio), replace=False)
for i, idx in enumerate(picked_idxs):
if is_bart:
inputs_[idx] = '<mask>'
else:
inputs_[idx] = '<extra_id_'+str(i)+'>'
return ' '.join(inputs_)
def generate_sent_input_all(sent, nmask=0, is_bart=False):
masked_phrases = []
try:
doc = nlp(sent)
noun_chunks = []
noun_chunk_pos = []
for chunk in doc.noun_chunks:
noun_chunks.append(chunk.text)
noun_chunk_pos.append((chunk.start, chunk.end))
all_noun_chunks = copy(noun_chunks)
if len(noun_chunks) > 0:
masked_sent = []
splitted_sent = [word.text for word in doc]
for i in range(len(noun_chunk_pos)):
cur_start = noun_chunk_pos[i][0]
cur_end = noun_chunk_pos[i][1]
if i == 0:#cur_start != 0:
masked_sent += splitted_sent[:cur_start]
if i == len(noun_chunk_pos)-1:
next_start = len(splitted_sent)
else:
next_start = noun_chunk_pos[i+1][0]
if is_bart:
masked_sent += ['<mask>']
else:
masked_sent += ['<extra_id_'+str(nmask)+'>']
masked_phrases += [' '.join(splitted_sent[cur_start:cur_end])]
nmask += 1
masked_sent += splitted_sent[cur_end:next_start]
masked_sent_ = ' '.join(masked_sent)
return masked_sent_, nmask, all_noun_chunks
else:
return sent, 0, []
except:
return sent, 0, []
def fill_phrases_by_sent(masked_sent, noun_chunks, nnc, ratio=0.9, is_bart=False, max_n=100):
masked_sent_ = copy(masked_sent)
all_pidxs = []
all_nidxs = []
for sent in nltk.sent_tokenize(masked_sent_):
masked_idxs = [int(x.split('>')[0].split('_')[-1]) for x in sent.split('<') if x.startswith('extra_')]
nnc = len(masked_idxs)
nfill = max(0, math.ceil(nnc*(1-ratio)))
if ratio == 1.0:
nfill = 0
pidxs = sorted(np.random.choice(masked_idxs, nfill, replace=False))
nidxs = [x for x in masked_idxs if x not in pidxs]
all_pidxs += pidxs
all_nidxs += nidxs
for idx in all_pidxs:
masked_sent_ = masked_sent_.replace('<extra_id_'+str(idx)+'>', noun_chunks[idx])
noun_chunks_picked = [noun_chunks[idx] for idx in all_nidxs]
target = ''
for i, idx in enumerate(all_nidxs):
if is_bart:
masked_sent_ = masked_sent_.replace('<extra_id_'+str(idx)+'>', '<mask>')
else:
masked_sent_ = masked_sent_.replace('<extra_id_'+str(idx)+'>', '<extra_id_'+str(i)+'>')
each_target = '<extra_id_'+str(i)+'> '+noun_chunks[idx]+' '
target += each_target
if (is_bart == False) and len(all_nidxs) == max_n:
cut_idx = masked_sent_.index('<extra_id_99>')+len('<extra_id_99>')
masked_sent_ = masked_sent_[:cut_idx]
return masked_sent_, target
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_name", default="ccdv/cnn_dailymail", type=str)
parser.add_argument("--dataset_config_name", default="3.0.0", type=str)
parser.add_argument("--input_file", default="None", type=str)
parser.add_argument("--output_file", default="test.pkl", type=str)
parser.add_argument("--ckpt_dir", default='fb_base', type=str)
parser.add_argument("--batch_size", default=32, type=int)
parser.add_argument("--tgt_max_length", default=128, type=int)
parser.add_argument("--src_max_length", default=1024, type=int)
parser.add_argument("--num_beams", default=4, type=int)
parser.add_argument("--num_cpus", default=10, type=int)
parser.add_argument("--mask_ratio1", default=0.0, type=float)
parser.add_argument("--mask_ratio2", default=0.0, type=float)
parser.add_argument("--mask_type", default='np', type=str)
parser.add_argument("--odd_even", default='odd', type=str)
args = parser.parse_args()
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
num_beams = args.num_beams
model_path = args.ckpt_dir
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = BartForConditionalGeneration.from_pretrained(model_path).cuda()
model.eval()
def preprocess_function(examples):
mask_ratio1 = args.mask_ratio1
mask_ratio2 = args.mask_ratio2
if args.input_file != 'None':
masked_input = examples['masked_articles']
noun_phrases = examples['nchunks_articles']
nnc = examples['nnc']
summaries = examples['summary']
inputs_2 = [fill_phrases_by_sent(x, y, z, ratio=args.mask_ratio2, is_bart=bool(args.is_bart))[0] for x,y,z in zip(masked_input, noun_phrases, nnc)]
inputs_1 = [mask_input_np(x, ratio=args.mask_ratio1) for x in summaries]
inputs = ['summary: '+x+' article: '+y for x,y in zip(inputs_1, inputs_2)]
else:
inputs_1 = examples['highlights']
inputs_2 = examples['article']
if args.mask_ratio1 != 0.0:
if args.mask_type == 'np':
inputs_1 = [mask_input_np(x, ratio=args.mask_ratio1) for x in inputs_1]
inputs_2 = [mask_input_np(x, ratio=args.mask_ratio2) for x in inputs_2]
else:
inputs_1 = [mask_input_split(x, ratio=args.mask_ratio1) for x in inputs_1]
inputs_2 = [mask_input_split(x, ratio=args.mask_ratio2) for x in inputs_2]
inputs = ['summary: '+x+' article: '+y for x,y in zip(inputs_1, inputs_2)]
model_inputs = tokenizer(inputs, max_length=args.src_max_length, padding='max_length', truncation=True)
return model_inputs
filled_summaries = []
all_inputs = []
if args.input_file != 'None':
with open(args.input_file, 'rb') as f:
infer_data = pickle.load(f)
infer_data = Dataset.from_dict(infer_data)
column_names = infer_data.column_names
else:
infer_data = raw_datasets['train']
column_names = infer_data.column_names
if args.odd_even != 'all':
if args.odd_even == 'even':
subset = [x for i,x in enumerate(infer_data) if i % 2 == 0]
else:
subset = [x for i,x in enumerate(infer_data) if i % 2 == 1]
subset_ = {}
for key in infer_data[0]:
subset_[key] = [x[key] for x in subset]
infer_data = Dataset.from_dict(subset_)
dataset = infer_data.map(
preprocess_function,
batched=True,
desc="Running tokenizer on dataset",
num_proc=args.num_cpus,
remove_columns=column_names
)
dataloader = DataLoader(dataset, collate_fn=default_data_collator, batch_size=args.batch_size)
all_outputs = []
filled_summaries = []
for batch in tqdm(dataloader):
with torch.no_grad():
outputs = model.generate(input_ids=batch['input_ids'].cuda(), attention_mask=batch['attention_mask'].cuda()
, max_length=args.tgt_max_length, num_beams=num_beams).cpu()
all_outputs += list(outputs)
filled_summaries += tokenizer.batch_decode(list(outputs), skip_special_tokens=False)
filled_summaries = [x.replace('<pad>', '').replace('</s>', '').replace('<s>','').strip() for x in filled_summaries]
with open(args.output_file, 'wb') as f:
pickle.dump(filled_summaries, f)
if __name__ == "__main__":
main()