-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsumOfSquaresEIO.m
53 lines (46 loc) · 1.91 KB
/
sumOfSquaresEIO.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
function ss = sumOfSquaresEIO(par, data)
% This method calculate the sum of squares error of the
% likelihood function.This is an error-in-outputs formulation.
% first we set a constant to reduce the value of the ss
% kReduce = 100; % the reduce ratio is k^2
% data.sigma.P = data.sigma.P * kReduce;
% data.sigma.Q = data.sigma.Q * kReduce;
% data.sigma.Vm = data.sigma.Vm * kReduce;
% data.sigma.Va = data.sigma.Va * kReduce;
[numBus, numSnap] = size(data.Pn);
numMP = sum(data.isMeasure.P);
numMQ = sum(data.isMeasure.Q);
numMeasure = numMP + numMQ;
% recover the parameters
G = colToMat(par(1:data.num.G), numBus);
B = colToMat(par(1+data.num.G:data.num.G+data.num.B), numBus);
% define the estimation matrices
est.P = zeros(numBus, numSnap);
est.Q = zeros(numBus, numSnap);
est.Vm = zeros(numBus, numSnap);
est.Va = zeros(numBus, numSnap);
for snap = 1:numSnap
% the power flow equation, P and Q injections
Theta_ij = repmat(data.Van(:, snap), 1, numBus) - repmat(data.Van(:, snap)', numBus, 1);
% G_ij\cos(\Theta_ij)+B_ij\sin(\Theta_ij)
GBThetaP = G .* cos(Theta_ij) + B .* sin(Theta_ij);
% G_ij\sin(\Theta_ij)-B_ij\cos(\Theta_ij)
GBThetaQ = G .* sin(Theta_ij) - B .* cos(Theta_ij);
est.P(:, snap) = (GBThetaP * data.Vmn(:, snap)) .* data.Vmn(:, snap);
est.Q(:, snap) = (GBThetaQ * data.Vmn(:, snap)) .* data.Vmn(:, snap);
end
ss = zeros(1, numMeasure);
ss(1:numMP) = (sum((est.P - data.Pn) .^ 2, 2))'; % ./ data.sigma.P
ss(1+numMP:numMP+numMQ) = (sum((est.Q - data.Qn) .^ 2, 2) )'; % ./ data.sigma.Q
end
function H = colToMat(h, n)
% This method transform the column of half triangle to a
% symmetric matrix
H = zeros(n, n);
pt = 1;
for i = 1:n
H(i, i:end) = h(pt:pt+n-i);
pt = pt+n-i+1;
end
H = H + triu(H, 1)';
end