-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDCCNN_train.py
417 lines (359 loc) · 14.7 KB
/
DCCNN_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import numpy as np
import logging
import argparse
import os
import shutil
import time
from os.path import join
from tqdm import tqdm
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import torchvision
from Datasets.FastMRI.subsample import MaskFunc
from Datasets.FastMRI.data import mri
from utils.loss import CompoundLoss
from Models import DCCNN
class DataTransform:
def __init__(self, mask_func, resolution, challenge, use_seed=True):
"""
Args:
mask_func (subsample.MaskFunc): A function that can create a mask for appropriate shape.
resolution (int): Resolution of the image
challenge (str): singlecoil or multicoil
use_seed (bool): If true, this class computes a pseudo random number generator
seed from the filename. This ensures that the same mask is used for all
the slices of a given volume every time.
"""
if challenge not in ('singlecoil', 'multicoil'):
raise ValueError(f'Challenge should either be "singlecoil" or "multicoil"')
self.mask_func = mask_func
self.resolution = resolution
self.challenge = challenge
self.use_seed = use_seed
def __call__(self, kspace, target, attrs, fname, slice):
"""
Args:
kspace (numpy.array): Input k-space of shape (num_coil, rows, cols, 2)
for multi-coil data or (rows, cols, 2) for single coil data.
target (numpy.array): Target image
attrs (dict): Acquisition related information stored in the HDF5 object
fname (str): File name
slice (int): Serial number of the slice
Returns:
(tuple):
image (torch.Tensor): Zero filled input image
target (torch.Tensor): Target image converted to a torch Tensor
mean (float): Mean value used for normalization
std (float): Standard deviation value used for normalization
norm (float): L2 norm of the entire volume.
"""
kspace = mri.to_tensor(kspace)
# Apply mask
seed = None if not self.use_seed else tuple(map(ord, fname))
masked_kspace, mask = mri.apply_mask(kspace, self.mask_func, seed)
# IFT to get zero filled solution
image = mri.ifft2(masked_kspace)
image = mri.complex_center_crop(image, (self.resolution, self.resolution))
image = mri.complex_abs(image)
if self.challenge == 'multicoil':
image = mri.root_sum_of_squares(image)
image, mean, std = mri.normalize_instance(image, eps=1e-11)
image = image.clamp(-6, 6)
target = mri.to_tensor(target)
target = mri.normalize(target, mean, std, eps=1e-11)
target = target.clamp(-6, 6)
return image, target, mean, std, attrs['norm'].astype(np.float32)
def create_dataset(args):
train_mask = MaskFunc(args.center_fractions, args.accelerations)
val_mask = MaskFunc(args.center_fractions, args.accelerations)
train_data = mri.SliceData(
root=args.train_path,
transform=DataTransform(train_mask, args.resolution, args.challenge),
sample_rate=args.sample_rate,
challenge=args.challenge
)
val_data = mri.SliceData(
root=args.val_path,
transform=DataTransform(val_mask, args.resolution, args.challenge),
sample_rate=args.sample_rate,
challenge=args.challenge
)
return val_data, train_data
def create_data_loaders(args):
val_data, train_data = create_dataset(args)
display_data = [val_data[i] for i in range(0, len(val_data), len(val_data) // 16)]
train_loader = DataLoader(
dataset=train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=8,
pin_memory=True,
)
val_loader = DataLoader(
dataset=val_data,
batch_size=args.batch_size,
num_workers=8,
pin_memory=True
)
display_loader = DataLoader(
dataset=display_data,
batch_size=16,
num_workers=8,
pin_memory=True
)
return train_loader, val_loader, display_loader
def build_model(args):
# network
if args.model_name == 'dccnn':
net = DCCNN(n_iter=8).to(args.device)
else:
raise (NotImplementedError("No model " + args.model_name))
print('Total # of model params: %.5fM' % (sum(p.numel() for p in net.parameters()) / 10. ** 6))
return net
def load_model(checkpoint):
checkpoint = torch.load(checkpoint)
args = checkpoint['args']
model = build_model(args)
if args.data_parallel:
model = torch.nn.DataParallel(model)
model.load_state_dict(checkpoint['model'])
optimizer = torch.optim.RMSprop(model.parameters(), args.lr, weight_decay=args.weight_decay)
optimizer.load_state_dict(checkpoint['optimizer'])
return checkpoint, model, optimizer
def train_epoch(args, epoch, model, data_loader, optimizer, writer):
model.train()
avg_loss = 0.
start_epoch = start_iter = time.perf_counter()
global_step = epoch * len(data_loader)
for iter, data in enumerate(data_loader):
input, target, mean, std, norm = data
input = input.unsqueeze(1).to(args.device)
target = target.to(args.device)
output = model(input).squeeze(1)
loss = F.smooth_l1_loss(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_loss = 0.99 * avg_loss + 0.01 * loss.item() if iter > 0 else loss.item()
writer.add_scalar('TrainLoss', loss.item(), global_step + iter)
if iter % args.report_interval == 0:
logging.info(
f'Epoch = [{epoch:3d}/{args.num_epochs:3d}] '
f'Iter = [{iter:4d}/{len(data_loader):4d}] '
f'Loss = {loss.item():.4g} Avg Loss = {avg_loss:.4g} '
f'Time = {time.perf_counter() - start_iter:.4f}s',
)
start_iter = time.perf_counter()
return avg_loss, time.perf_counter() - start_epoch
def evaluate(args, epoch, model, data_loader, writer):
model.eval()
losses = []
start = time.perf_counter()
with torch.no_grad():
for iter, data in enumerate(data_loader):
input, target, mean, std, norm = data
input = input.unsqueeze(1).to(args.device)
target = target.to(args.device)
output = model(input).squeeze(1)
mean = mean.unsqueeze(1).unsqueeze(2).to(args.device)
std = std.unsqueeze(1).unsqueeze(2).to(args.device)
target = target * std + mean
output = output * std + mean
norm = norm.unsqueeze(1).unsqueeze(2).to(args.device)
loss = F.mse_loss(output / norm, target / norm, size_average=False)
losses.append(loss.item())
writer.add_scalar('Dev_Loss', np.mean(losses), epoch)
return np.mean(losses), time.perf_counter() - start
def visualize(args, epoch, model, data_loader, writer):
def save_image(image, tag):
image -= image.min()
image /= image.max()
grid = torchvision.utils.make_grid(image, nrow=4, pad_value=1)
writer.add_image(tag, grid, epoch)
model.eval()
with torch.no_grad():
for iter, data in enumerate(data_loader):
input, target, mean, std, norm = data
input = input.unsqueeze(1).to(args.device)
target = target.unsqueeze(1).to(args.device)
output = model(input)
save_image(target, 'Target')
save_image(output, 'Reconstruction')
save_image(torch.abs(target - output), 'Error')
break
def save_model(args, exp_dir, epoch, model, optimizer, best_dev_loss, is_new_best):
torch.save(
{
'epoch': epoch,
'args': args,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_dev_loss': best_dev_loss,
'exp_dir': exp_dir
},
f=exp_dir / 'model.pt'
)
if is_new_best:
shutil.copyfile(exp_dir / 'model.pt', exp_dir / 'best_model.pt')
def solve(args):
args.exp_dir.mkdir(parents=True, exist_ok=True)
writer = SummaryWriter(log_dir=args.exp_dir / 'summary')
if args.resume:
checkpoint, model, optimizer = load_model(args.checkpoint)
args = checkpoint['args']
best_dev_loss = checkpoint['best_dev_loss']
start_epoch = checkpoint['epoch']
del checkpoint
else:
model = build_model(args)
if args.data_parallel:
model = torch.nn.DataParallel(model)
optimizer = torch.optim.RMSprop(model.parameters(), args.lr, weight_decay=args.weight_decay)
best_dev_loss = 1e9
start_epoch = 0
logging.info(args)
logging.info(model)
train_loader, dev_loader, display_loader = create_data_loaders(args)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_step_size, args.lr_gamma)
for epoch in range(start_epoch, args.num_epochs):
scheduler.step(epoch)
train_loss, train_time = train_epoch(args, epoch, model, train_loader, optimizer, writer)
dev_loss, dev_time = evaluate(args, epoch, model, dev_loader, writer)
visualize(args, epoch, model, display_loader, writer)
is_new_best = dev_loss < best_dev_loss
best_dev_loss = min(best_dev_loss, dev_loss)
save_model(args, args.exp_dir, epoch, model, optimizer, best_dev_loss, is_new_best)
logging.info(
f'Epoch = [{epoch:4d}/{args.num_epochs:4d}] TrainLoss = {train_loss:.4g} '
f'DevLoss = {dev_loss:.4g} TrainTime = {train_time:.4f}s DevTime = {dev_time:.4f}s',
)
writer.close()
# class Solver():
# def __init__(self, args):
# torch.autograd.set_detect_anomaly(True)
# self.args = args
#
# ## experiment settings
# self.model_name = self.args.model
# self.acc = self.args.acc
# self.imageDir_train = self.args.train_path
# self.imageDir_val = self.args.val_path
# self.imageDir_test = self.args.test
# self.num_epoch = self.args.num_epoch
# self.batch_size = self.args.batch_size
# self.val_on_epochs = self.args.val_on_epochs
# self.resume = self.args.resume
#
# ## optimizer setting
# self.lr = self.args.lr
#
# ## preprocessing setting
# self.img_size = (192, 160)
# self.saveDir = 'weight' # model save path while training
# if not os.path.isdir(self.saveDir):
# os.makedirs(self.saveDir)
#
# self.task_name = self.model_name + '_acc_' + str(self.acc) + '_bs_' + str(self.batch_size) + '_lr_' + str(
# self.lr)
# print('task name: ', self.task_name)
# self.model_path = 'weight/' + self.task_name + '_best.pth' # model load path
#
# ## network
# if self.model_name == 'dccnn':
# self.net = DCCNN(n_iter=8)
# else:
# raise (NotImplementedError("No model " + self.model_name))
#
# print('Total # of model params: %.5fM' % (sum(p.numel() for p in self.net.parameters()) / 10. ** 6))
#
# self.net.cuda()
#
# def train(self):
# ## Losses
# self.criterion = CompoundLoss('ms-ssim')
# self.optimizer = optim.Adam(self.net.parameters(), lr=self.lr, eps=1e-3, weight_decay=1e-10)
#
# # load data
# dataset_train, dataset_val, dataset_display = create_data_loaders(args)
#
# self.writer = SummaryWriter('log/' + self.task_name)
#
# ## run epochs
# start_epoch = 0
# best_val_psnr = 0
# if self.resume:
# best_name = self.task_name + '_best.pth'
# checkpoint = torch.load(join(self.saveDir, best_name))
# self.net.load_state_dict(checkpoint['net'])
# start_epoch = checkpoint['epoch'] + 1
# best_val_psnr = checkpoint['val_psnr']
# print('load pretrained model---, start epoch at, ', start_epoch, ', star_psnr_val is: ', best_val_psnr)
#
# for epoch in range(start_epoch, self.num_epoch):
# self.net.train()
# for data_dict in tqdm(dataset_train):
if __name__ == '__main__':
parser = argparse.ArgumentParser()
## Experiement settings
parser.add_argument('--mode',
default='train',
choices=['train', 'test'],
help='mode for the program')
parser.add_argument('--model',
default='dccnn',
choices=['dccnn', 'pldnet', 'hqsnet'],
help='models to reconstruct')
parser.add_argument('--acc',
type=int,
default=4,
help='Acceleration factor for k-space sampling')
## Dataset
parser.add_argument('--train_path',
default='data/train/',
help='train_path')
parser.add_argument('--val_path',
default='data/val/',
help='val_path')
parser.add_argument('--test_path',
default='data/test/',
help='test_path')
# Mask parameters
parser.add_argument('--accelerations',
nargs='+',
default=[4, 8],
type=int,
help='Ratio of k-space columns to be sampled. If multiple values are '
'provided, then one of those is chosen uniformly at random for '
'each volume.')
parser.add_argument('--center-fractions',
nargs='+',
default=[0.08, 0.04],
type=float,
help='Fraction of low-frequency k-space columns to be sampled. Should '
'have the same length as accelerations')
## model training
parser.add_argument('--number_epoch',
type=int,
default=300,
help='num of training epoch')
parser.add_argument('--val_on_epochs',
type=int,
default=1,
help='validate for each n epochs')
parser.add_argument('--batch_size',
type=int,
default=1,
help='batch size')
parser.add_argument('--lr',
type=float,
default=1e-3,
help='learning rate for training')
parser.add_argument('--resume',
default='True',
action='store_true')
args = parser.parse_args()
print(args)
solve(args)