-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
mini_ic3.py
400 lines (351 loc) · 11.7 KB
/
mini_ic3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
from z3 import *
import heapq
# Simplistic (and fragile) converter from
# a class of Horn clauses corresponding to
# a transition system into a transition system
# representation as <init, trans, goal>
# It assumes it is given three Horn clauses
# of the form:
# init(x) => Invariant(x)
# Invariant(x) and trans(x,x') => Invariant(x')
# Invariant(x) and goal(x) => Goal(x)
# where Invariant and Goal are uninterpreted predicates
class Horn2Transitions:
def __init__(self):
self.trans = True
self.init = True
self.inputs = []
self.goal = True
self.index = 0
def parse(self, file):
fp = Fixedpoint()
goals = fp.parse_file(file)
for r in fp.get_rules():
if not is_quantifier(r):
continue
b = r.body()
if not is_implies(b):
continue
f = b.arg(0)
g = b.arg(1)
if self.is_goal(f, g):
continue
if self.is_transition(f, g):
continue
if self.is_init(f, g):
continue
def is_pred(self, p, name):
return is_app(p) and p.decl().name() == name
def is_goal(self, body, head):
if not self.is_pred(head, "Goal"):
return False
pred, inv = self.is_body(body)
if pred is None:
return False
self.goal = self.subst_vars("x", inv, pred)
self.goal = self.subst_vars("i", self.goal, self.goal)
self.inputs += self.vars
self.inputs = list(set(self.inputs))
return True
def is_body(self, body):
if not is_and(body):
return None, None
fmls = [f for f in body.children() if self.is_inv(f) is None]
inv = None
for f in body.children():
if self.is_inv(f) is not None:
inv = f;
break
return And(fmls), inv
def is_inv(self, f):
if self.is_pred(f, "Invariant"):
return f
return None
def is_transition(self, body, head):
pred, inv0 = self.is_body(body)
if pred is None:
return False
inv1 = self.is_inv(head)
if inv1 is None:
return False
pred = self.subst_vars("x", inv0, pred)
self.xs = self.vars
pred = self.subst_vars("xn", inv1, pred)
self.xns = self.vars
pred = self.subst_vars("i", pred, pred)
self.inputs += self.vars
self.inputs = list(set(self.inputs))
self.trans = pred
return True
def is_init(self, body, head):
for f in body.children():
if self.is_inv(f) is not None:
return False
inv = self.is_inv(head)
if inv is None:
return False
self.init = self.subst_vars("x", inv, body)
return True
def subst_vars(self, prefix, inv, fml):
subst = self.mk_subst(prefix, inv)
self.vars = [ v for (k,v) in subst ]
return substitute(fml, subst)
def mk_subst(self, prefix, inv):
self.index = 0
if self.is_inv(inv) is not None:
return [(f, self.mk_bool(prefix)) for f in inv.children()]
else:
vars = self.get_vars(inv)
return [(f, self.mk_bool(prefix)) for f in vars]
def mk_bool(self, prefix):
self.index += 1
return Bool("%s%d" % (prefix, self.index))
def get_vars(self, f, rs=[]):
if is_var(f):
return z3util.vset(rs + [f], str)
else:
for f_ in f.children():
rs = self.get_vars(f_, rs)
return z3util.vset(rs, str)
# Produce a finite domain solver.
# The theory QF_FD covers bit-vector formulas
# and pseudo-Boolean constraints.
# By default cardinality and pseudo-Boolean
# constraints are converted to clauses. To override
# this default for cardinality constraints
# we set sat.cardinality.solver to True
def fd_solver():
s = SolverFor("QF_FD")
s.set("sat.cardinality.solver", True)
return s
# negate, avoid double negation
def negate(f):
if is_not(f):
return f.arg(0)
else:
return Not(f)
def cube2clause(cube):
return Or([negate(f) for f in cube])
class State:
def __init__(self, s):
self.R = set([])
self.solver = s
def add(self, clause):
if clause not in self.R:
self.R |= { clause }
self.solver.add(clause)
class Goal:
def __init__(self, cube, parent, level):
self.level = level
self.cube = cube
self.parent = parent
def __lt__(self, other):
return self.level < other.level
def is_seq(f):
return isinstance(f, list) or isinstance(f, tuple) or isinstance(f, AstVector)
# Check if the initial state is bad
def check_disjoint(a, b):
s = fd_solver()
s.add(a)
s.add(b)
return unsat == s.check()
# Remove clauses that are subsumed
def prune(R):
removed = set([])
s = fd_solver()
for f1 in R:
s.push()
for f2 in R:
if f2 not in removed:
s.add(Not(f2) if f1.eq(f2) else f2)
if s.check() == unsat:
removed |= { f1 }
s.pop()
return R - removed
class MiniIC3:
def __init__(self, init, trans, goal, x0, inputs, xn):
self.x0 = x0
self.inputs = inputs
self.xn = xn
self.init = init
self.bad = goal
self.trans = trans
self.min_cube_solver = fd_solver()
self.min_cube_solver.add(Not(trans))
self.goals = []
s = State(fd_solver())
s.add(init)
s.solver.add(trans)
self.states = [s]
self.s_bad = fd_solver()
self.s_good = fd_solver()
self.s_bad.add(self.bad)
self.s_good.add(Not(self.bad))
def next(self, f):
if is_seq(f):
return [self.next(f1) for f1 in f]
return substitute(f, [p for p in zip(self.x0, self.xn)])
def prev(self, f):
if is_seq(f):
return [self.prev(f1) for f1 in f]
return substitute(f, [p for p in zip(self.xn, self.x0)])
def add_solver(self):
s = fd_solver()
s.add(self.trans)
self.states += [State(s)]
def R(self, i):
return And(self.states[i].R)
# Check if there are two states next to each other that have the same clauses.
def is_valid(self):
i = 1
while i + 1 < len(self.states):
if not (self.states[i].R - self.states[i+1].R):
return And(prune(self.states[i].R))
i += 1
return None
def value2literal(self, m, x):
value = m.eval(x)
if is_true(value):
return x
if is_false(value):
return Not(x)
return None
def values2literals(self, m, xs):
p = [self.value2literal(m, x) for x in xs]
return [x for x in p if x is not None]
def project0(self, m):
return self.values2literals(m, self.x0)
def projectI(self, m):
return self.values2literals(m, self.inputs)
def projectN(self, m):
return self.values2literals(m, self.xn)
# Determine if there is a cube for the current state
# that is potentially reachable.
def unfold(self):
core = []
self.s_bad.push()
R = self.R(len(self.states)-1)
self.s_bad.add(R)
is_sat = self.s_bad.check()
if is_sat == sat:
m = self.s_bad.model()
cube = self.project0(m)
props = cube + self.projectI(m)
self.s_good.push()
self.s_good.add(R)
is_sat2 = self.s_good.check(props)
assert is_sat2 == unsat
core = self.s_good.unsat_core()
core = [c for c in core if c in set(cube)]
self.s_good.pop()
self.s_bad.pop()
return is_sat, core
# Block a cube by asserting the clause corresponding to its negation
def block_cube(self, i, cube):
self.assert_clause(i, cube2clause(cube))
# Add a clause to levels 0 until i
def assert_clause(self, i, clause):
for j in range(i + 1):
self.states[j].add(clause)
# minimize cube that is core of Dual solver.
# this assumes that props & cube => Trans
def minimize_cube(self, cube, inputs, lits):
is_sat = self.min_cube_solver.check(lits + [c for c in cube] + [i for i in inputs])
assert is_sat == unsat
core = self.min_cube_solver.unsat_core()
assert core
return [c for c in core if c in set(cube)]
# push a goal on a heap
def push_heap(self, goal):
heapq.heappush(self.goals, (goal.level, goal))
# A state s0 and level f0 such that
# not(s0) is f0-1 inductive
def ic3_blocked(self, s0, f0):
self.push_heap(Goal(self.next(s0), None, f0))
while self.goals:
f, g = heapq.heappop(self.goals)
sys.stdout.write("%d." % f)
sys.stdout.flush()
# Not(g.cube) is f-1 invariant
if f == 0:
print("")
return g
cube, f, is_sat = self.is_inductive(f, g.cube)
if is_sat == unsat:
self.block_cube(f, self.prev(cube))
if f < f0:
self.push_heap(Goal(g.cube, g.parent, f + 1))
elif is_sat == sat:
self.push_heap(Goal(cube, g, f - 1))
self.push_heap(g)
else:
return is_sat
print("")
return None
# Rudimentary generalization:
# If the cube is already unsat with respect to transition relation
# extract a core (not necessarily minimal)
# otherwise, just return the cube.
def generalize(self, cube, f):
s = self.states[f - 1].solver
if unsat == s.check(cube):
core = s.unsat_core()
if not check_disjoint(self.init, self.prev(And(core))):
return core, f
return cube, f
# Check if the negation of cube is inductive at level f
def is_inductive(self, f, cube):
s = self.states[f - 1].solver
s.push()
s.add(self.prev(Not(And(cube))))
is_sat = s.check(cube)
if is_sat == sat:
m = s.model()
s.pop()
if is_sat == sat:
cube = self.next(self.minimize_cube(self.project0(m), self.projectI(m), self.projectN(m)))
elif is_sat == unsat:
cube, f = self.generalize(cube, f)
return cube, f, is_sat
def run(self):
if not check_disjoint(self.init, self.bad):
return "goal is reached in initial state"
level = 0
while True:
inv = self.is_valid()
if inv is not None:
return inv
is_sat, cube = self.unfold()
if is_sat == unsat:
level += 1
print("Unfold %d" % level)
sys.stdout.flush()
self.add_solver()
elif is_sat == sat:
cex = self.ic3_blocked(cube, level)
if cex is not None:
return cex
else:
return is_sat
def test(file):
h2t = Horn2Transitions()
h2t.parse(file)
mp = MiniIC3(h2t.init, h2t.trans, h2t.goal, h2t.xs, h2t.inputs, h2t.xns)
result = mp.run()
if isinstance(result, Goal):
g = result
print("Trace")
while g:
print(g.level, g.cube)
g = g.parent
return
if isinstance(result, ExprRef):
print("Invariant:\n%s " % result)
return
print(result)
test("data/horn1.smt2")
test("data/horn2.smt2")
test("data/horn3.smt2")
test("data/horn4.smt2")
test("data/horn5.smt2")
# test("data/horn6.smt2") # takes long time to finish