From 57423b0ff57c223eb77ee338d519eee8780ab73e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?S=C3=A9bastien=20Designolle?= Date: Wed, 25 Sep 2024 14:20:34 +0200 Subject: [PATCH] Remove main_probability.jl --- src/main_probability.jl | 310 ---------------------------------------- 1 file changed, 310 deletions(-) delete mode 100644 src/main_probability.jl diff --git a/src/main_probability.jl b/src/main_probability.jl deleted file mode 100644 index 561bb76..0000000 --- a/src/main_probability.jl +++ /dev/null @@ -1,310 +0,0 @@ -""" -Calls the lazy pairwise blended conditional gradient algorithm from Frank-Wolfe package. - -Arguments: -kj - `p`: a probability tensor of order `N`. - -Returns: - - `x`: a probability tensor of order `N`, the output of the Frank-Wolfe algorithm, - - `ds`: a deterministic strategy, the atom returned by the last LMO, - - `primal`: `½|x-v₀*p|²` - - `dual_gap`: `⟨x-v₀*p, x-ds⟩` - - `active_set`: all deterministic strategies used for the decomposition of the last iterate `x`, contains fields `weights`, `atoms`, and `x`, - - `M`: a Bell inequality, meaningful only if the dual gap is small enough - - `β`: the local bound of the inequality parametrised by `M`, reliable only if the last LMO is exact. - -Optional arguments: - - `v0`: the visibility used to make a nonlocal `p` closer to the local polytope, - - `epsilon`: the tolerance, used as a stopping criterion (when the primal value or the dual gap go below its value), by default 1e-7, - - `verbose`: an integer, indicates the level of verbosity from 0 to 3, - - `shr2`: the potential underlying shrinking factor, used to display the lower bound in the callback, - - `mode`: an integer, 0 is for the heuristic LMO, 1 for the enumeration LMO, - - `nb`: an integer, number of random tries in the LMO, if heuristic, by default 10^2, - - `TL`: type of the last call of the LMO, - - `mode_last`: an integer, mode of the last call of the LMO, -1 for no last call - - `nb_last`: an integer, number of random tries in the last LMO, if heuristic, by default 10^5, - - `sym`: a boolean, indicates if the symmetry of the input should be used, by default automatic choice, - - `use_array`: a boolean, indicates to store the full deterministic strategies to trade memory for speed in multipartite scenarios, - - `callback_interval`: an integer, print interval if `verbose` = 3, - - `seed`: an integer, the initial random seed. -""" -function bell_frank_wolfe_probability( - p::Array{T, N}; - marg::Bool=N != 2, - v0=one(T), - epsilon=1e-7, - verbose=0, - shr2=NaN, - mode::Int=0, - nb::Int=10^2, - TL::DataType=T, - mode_last::Int=mode, - nb_last::Int=10^5, - epsilon_last=0, - sym::Union{Nothing, Bool}=nothing, - reduce::Function=identity, - inflate::Function=identity, - active_set=nothing, # warm start - lazy::Bool=true, # default in FW package is false - max_iteration::Int=10^7, # default in FW package is 10^4 - recompute_last_vertex=false, # default in FW package is true - callback_interval::Int=verbose > 0 ? 10^4 : typemax(Int), - renorm_interval::Int=10^3, - hyperplane_interval::Int=verbose > 0 ? 10callback_interval : typemax(Int), - bound_interval::Int=verbose > 0 ? 10callback_interval : typemax(Int), - nb_increment_interval::Int=verbose > 0 ? 10callback_interval : typemax(Int), - save_interval::Int=verbose > 0 ? 100callback_interval : typemax(Int), - save::Bool=false, - file=nothing, - seed::Int=0, - kwargs..., -) where {T <: Number} where {N} - Random.seed!(seed) - if verbose > 0 - println("Visibility: ", v0) - end - prob = true - LMO = BellProbabilitiesLMO - DS = BellProbabilitiesDS - m = collect(size(p)[N÷2+1:end]) - # center of the polytope - o = ones(T, size(p)) / prod(size(p)[1:N÷2]) - if sym === nothing && all(diff(m) .== 0) && p ≈ reynolds_permutelastdims(p) - reduce, inflate = build_reduce_inflate_permutelastdims(p) - sym = true - else - sym = false - end - # nb of inputs - if verbose > 1 - println(" Symmetric: ", sym) - println(" #Inputs: ", all(diff(m) .== 0) ? m[end] - (marg && !prob) : m .- (marg && !prob)) - end - # choosing the point on the line between o and p according to the visibility v0 - vp = reduce(v0 * p + (one(T) - v0) * o) - # create the LMO - if sym - lmo = FrankWolfe.SymmetricLMO(LMO(p, vp; mode, nb, marg), reduce, inflate) - else - lmo = LMO(p, vp; mode, nb, marg) - end - o = reduce(o) - p = reduce(p) - # useful to make f efficient - normp2 = dot(vp, vp) / 2 - # weird syntax to enable the compiler to correctly understand the type - f = let vp = vp, normp2 = normp2 - x -> normp2 + dot(x, x) / 2 - dot(vp, x) - end - grad! = let vp = vp - (storage, xit) -> begin - @inbounds for x in eachindex(xit) - storage[x] = xit[x] - vp[x] - end - end - end - if active_set === nothing - # run the LMO once from the center o to get a vertex - x0 = FrankWolfe.compute_extreme_point(lmo, o - vp) - active_set = FrankWolfe.ActiveSetQuadratic([(one(T), x0)], I, -vp) - lmo.lmo.active_set = active_set - else - if active_set isa AbstractActiveSetStorage - active_set = load_active_set(active_set, T; sym, marg) - end - active_set_link_lmo!(active_set, lmo, -vp) - active_set_reinitialise!(active_set) - if verbose > 1 - println("Active set initialised") - end - end - if verbose > 0 - println() - end - callback = build_callback( - p, - v0, - o, - shr2^(iseven(N) ? N ÷ 2 : N / 2), - verbose, - epsilon, - callback_interval, - renorm_interval, - hyperplane_interval, - bound_interval, - nb_increment_interval, - save, - file, - save_interval, - ) - # main call to FW - x, ds, primal, dual_gap, _, as = FrankWolfe.blended_pairwise_conditional_gradient( - f, - grad!, - lmo, - active_set; - callback, - epsilon, - lazy, - line_search=FrankWolfe.Shortstep(one(T)), - max_iteration, - recompute_last_vertex, - renorm_interval=typemax(Int), - trajectory=false, - verbose=false, - kwargs..., - ) - if verbose ≥ 2 - println() - @printf("Primal: %.2e\n", primal) - @printf("FW gap: %.2e\n", dual_gap) - @printf("#Atoms: %d\n", length(as)) - @printf(" #LMO: %d\n", lmo.lmo.data[2]) - end - if sym - atoms = [FrankWolfe.SymmetricArray(DS(atom.data; T2=TL), TL.(atom.vec)) for atom in as.atoms] - vp_last = FrankWolfe.SymmetricArray(TL.(vp.data), TL.(vp.vec)) - else - atoms = [DS(atom; T2=TL) for atom in as.atoms] - vp_last = TL.(vp) - end - as = T == TL ? as : FrankWolfe.ActiveSetQuadratic([(TL.(as.weights[i]), atoms[i]) for i in eachindex(as)], I, -vp_last) - FrankWolfe.compute_active_set_iterate!(as) - x = as.x - tmp = abs(FrankWolfe.fast_dot(vp - x, p)) - if sym - M = FrankWolfe.SymmetricArray(TL.(vp.data - x.data) / (tmp == 0 ? 1 : tmp), TL.(vp.vec - x.vec) / (tmp == 0 ? 1 : tmp)) - else - M = TL.((vp - x) / (tmp == 0 ? 1 : tmp)) - end - if mode_last ≥ 0 # bypass the last LMO with a negative mode - if sym - lmo_last = FrankWolfe.SymmetricLMO(LMO(lmo.lmo, vp_last; mode=mode_last, T2=TL, nb=nb_last), reduce, inflate) - else - lmo_last = LMO(lmo.lmo, vp_last; mode=mode_last, T2=TL, nb=nb_last) - end - ds = FrankWolfe.compute_extreme_point(lmo_last, -M; verbose=verbose > 0) - else - if sym - ds = FrankWolfe.SymmetricArray(DS(ds.data; T2=TL), TL.(ds.vec)) - else - ds = DS(ds; T2=TL) - end - end - # renormalise the inequality by its smalles element, neglecting entries smaller than epsilon_last - if epsilon_last > 0 - M[abs.(M) .< epsilon_last] .= zero(TL) - M ./= minimum(abs.(M[abs.(M) .> zero(TL)])) - end - β = FrankWolfe.fast_dot(M, ds) / FrankWolfe.fast_dot(M, p) # local/global max found by the LMO - dual_gap = FrankWolfe.fast_dot(x - vp, x) - FrankWolfe.fast_dot(x - vp, ds) - if verbose > 0 - if verbose ≥ 2 && mode_last ≥ 0 - @printf("FW gap: %.2e\n", dual_gap) # recomputed FW gap (usually with a more reliable heuristic) - println() - end - if primal > dual_gap - @printf("v_c ≤ %f\n", β) - else - ν = 1 / (1 + norm(vp - as.x, 2)) - @printf("v_c ≥ %f (%f)\n", shr2^(N / 2) * ν * v0, shr2^(N / 2) * v0) - end - end - if save - serialize(file * ".dat", ActiveSetStorage(as)) - end - if sym - return inflate(x), ds.data, primal, dual_gap, as, inflate(M), β - else - return x, ds, primal, dual_gap, as, M, β - end -end -export bell_frank_wolfe_probability - -""" -Compute the local bound of a Bell inequality parametrised by `M`. -No symmetry detection is implemented yet, used mostly for pedagogy and tests. -""" -""" -Compute the nonlocality threshold of the qubit measurements encoded by the Bloch vectors `vec` in a Bell scenario with `N` parties. - -Arguments: - - `vec`: an `m × 3` matrix with Bloch vectors coordinates, - - `N`: the number of parties. - -Returns: - - `lower_bound_infinite`: a lower bound on the nonlocality threshold under all projective measurements (in the subspace spanned by `vec` in the Bloch sphere), - - `lower_bound`: a lower bound on the nonlocality threshold under the measurements provided in input, - - `upper_bound`: a (heuristic) upper bound on the nonlocality threshold under the measurements provided in input, also valid for all projective measurements - - `local_model`: a decomposition of the probability tensor obtained by applying the measurements encoded by the Bloch vectors `vec` on all `N` subsystems of the shared state `rho` with visibility `lower_bound`, - - `bell_inequality`: a (heuristic) Bell inequality corresponding to `upper_bound`. - -Optional arguments: - - `rho`: the shared state, by default the singlet state in the bipartite case and the GHZ state otherwise, - - `v0`: the initial visibility, which should be an upper bound on the nonlocality threshold, 1.0 by default, - - `precision`: number of digits of `lower_bound`, 4 by default, - - for the other optional arguments, see `bell_frank_wolfe`. -""" -function nonlocality_threshold_probability( - vec::Union{TB, Vector{TB}}, - N::Int; - rho=N == 2 ? rho_singlet(; type=T) : rho_GHZ(N; type=T), - epsilon=1e-8, - marg::Bool=false, - v0=one(T), - precision=4, - verbose=-1, - kwargs..., -) where {TB <: AbstractMatrix{T}} where {T <: Number} - p = probability_tensor(vec, N; rho, marg) - shr2 = shrinking_squared(vec; verbose=verbose > 0) - lower_bound = zero(T) - upper_bound = one(T) - local_model = nothing - bell_inequality = nothing - while upper_bound - lower_bound > 10.0^(-precision) - res = bell_frank_wolfe_probability( - p; - v0, - verbose=verbose + (upper_bound == one(T)) / 2, - epsilon, - shr2, - sym=false, - kwargs..., - ) - x, ds, primal, dual_gap, as, M, β = res - if primal > 10epsilon && dual_gap > 10epsilon - @warn "Please increase nb or max_iteration" - end - if dual_gap < primal - if β < upper_bound - upper_bound = round(β; digits=precision) - bell_inequality = M - if v0 == round(β; digits=precision) - v0 = round(β - 10.0^(-precision); digits=precision) - else - v0 = round(β; digits=precision) - end - else - @warn "Unexpected output" - break - end - else - lower_bound = v0 - local_model = as - if upper_bound < lower_bound - upper_bound = round(v0 + 2 * 10.0^(-precision); digits=precision) - end - v0 = (lower_bound + upper_bound) / 2 - end - end - o = zeros(T, size(p)) - if marg - o[end] = one(T) - end - ν = 1 / (1 + norm(lower_bound * p + (1 - lower_bound) * o - local_model.x, 2)) - lower_bound_infinite = shr2^(N / 2) * ν * lower_bound - # when mode_last = 0, the upper bound is not valid until the actual local bound (and not only the heuristic one) is computed - return lower_bound_infinite, lower_bound, upper_bound, local_model, bell_inequality -end -export nonlocality_threshold_probability