-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
155 lines (130 loc) · 4.62 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import os
c10_classes = np.array([[0, 1, 2, 8, 9], [3, 4, 5, 6, 7]], dtype=np.int32)
def loaders(
dataset,
path,
batch_size,
num_workers,
transform_train,
transform_test,
use_validation=True,
val_size=5000,
split_classes=None,
shuffle_train=True,
**kwargs
):
path = os.path.join(path, dataset.lower())
ds = getattr(torchvision.datasets, dataset)
train_set = ds(root=path, train=True, download=True, transform=transform_train)
num_classes = max(train_set.targets) + 1
if use_validation:
print(
"Using train ("
+ str(len(train_set.data) - val_size)
+ ") + validation ("
+ str(val_size)
+ ")"
)
train_set.data = train_set.data[:-val_size]
train_set.targets = train_set.targets[:-val_size]
test_set = ds(root=path, train=True, download=True, transform=transform_test)
test_set.train = False
test_set.data = test_set.data[-val_size:]
test_set.targets = test_set.targets[-val_size:]
# delattr(test_set, 'data')
# delattr(test_set, 'targets')
else:
print("You are going to run models on the test set. Are you sure?")
test_set = ds(root=path, train=False, download=True, transform=transform_test)
if split_classes is not None:
assert dataset == "CIFAR10"
assert split_classes in {0, 1}
print("Using classes:", end="")
print(c10_classes[split_classes])
train_mask = np.isin(train_set.targets, c10_classes[split_classes])
train_set.data = train_set.data[train_mask, :]
train_set.targets = np.array(train_set.targets)[train_mask]
train_set.targets = np.where(
train_set.targets[:, None] == c10_classes[split_classes][None, :]
)[1].tolist()
print("Train: %d/%d" % (train_set.data.shape[0], train_mask.size))
test_mask = np.isin(test_set.targets, c10_classes[split_classes])
print(test_set.data.shape, test_mask.shape)
test_set.data = test_set.data[test_mask, :]
test_set.targets = np.array(test_set.targets)[test_mask]
test_set.targets = np.where(
test_set.targets[:, None] == c10_classes[split_classes][None, :]
)[1].tolist()
print("Test: %d/%d" % (test_set.data.shape[0], test_mask.size))
return (
{
"train": torch.utils.data.DataLoader(
train_set,
batch_size=batch_size,
shuffle=True and shuffle_train,
num_workers=num_workers,
pin_memory=True,
),
"test": torch.utils.data.DataLoader(
test_set,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
),
},
num_classes,
)
def loader(path, batch_size, num_workers, shuffle_train=True):
train_dir = os.path.join(path, "train")
# validation_dir = os.path.join(path, 'validation')
test_dir = os.path.join(path, "adv_data")
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
transform_train = transforms.Compose(
[
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
)
transform_test = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]
)
train_set = torchvision.datasets.ImageFolder(train_dir, transform=transform_train)
test_set = torchvision.datasets.ImageFolder(
test_dir, transform=transform_test
)
num_classes = 10
return (
{
"train": torch.utils.data.DataLoader(
train_set,
batch_size=batch_size,
shuffle=shuffle_train,
num_workers=num_workers,
pin_memory=True,
),
"test": torch.utils.data.DataLoader(
test_set,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
),
},
num_classes,
)