-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
164 lines (132 loc) · 5.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import os
import sys
import tabulate
import time
import torch
import torch.nn.functional as F
import data
import models
import utils
parser = argparse.ArgumentParser(description='SGD training')
parser.add_argument('--dir', type=str, default='/home/PFGE/', metavar='DIR',
help='training directory (default: /home/PFGE/)')
parser.add_argument('--dataset', type=str, default='CIFAR10', metavar='DATASET',
help='dataset name (default: CIFAR10)')
parser.add_argument('--use_test', action='store_true', default=True,
help='switches between validation and test set (default: validation)')
parser.add_argument('--data_path', type=str, default=None, metavar='PATH',
help='path to datasets location (default: None)')
parser.add_argument('--batch_size', type=int, default=128, metavar='N',
help='input batch size (default: 128)')
parser.add_argument('--num-workers', type=int, default=4, metavar='N',
help='number of workers (default: 4)')
parser.add_argument("--split_classes", type=int, default=None)
parser.add_argument('--model', type=str, default=None, metavar='MODEL', required=True,
help='model name (default: None)')
parser.add_argument('--resume', type=str, default=None, metavar='CKPT',
help='checkpoint to resume training from (default: None)')
parser.add_argument('--epochs', type=int, default=200, metavar='N',
help='number of epochs to train (default: 200)')
parser.add_argument('--save_freq', type=int, default=50, metavar='N',
help='save frequency (default: 50)')
parser.add_argument('--lr_init', type=float, default=0.01, metavar='LR',
help='initial learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--wd', type=float, default=1e-4, metavar='WD',
help='weight decay (default: 1e-4)')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
args = parser.parse_args()
args.device = None
use_cuda = torch.cuda.is_available()
if use_cuda:
args.device = torch.device("cuda")
else:
args.device = torch.device("cpu")
os.makedirs(args.dir, exist_ok=True)
with open(os.path.join(args.dir, 'command.sh'), 'w') as f:
f.write(' '.join(sys.argv))
f.write('\n')
torch.backends.cudnn.benchmark = True
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
print("Using model %s" % args.model)
model_cfg = getattr(models, args.model)
print("Loading dataset %s from %s" % (args.dataset, args.data_path))
loaders, num_classes = data.loaders(
args.dataset,
args.data_path,
args.batch_size,
args.num_workers,
model_cfg.transform_train,
model_cfg.transform_test,
use_validation=not args.use_test,
split_classes=args.split_classes,
)
print("Preparing model")
print(*model_cfg.args)
model = model_cfg.base(*model_cfg.args, num_classes=num_classes, **model_cfg.kwargs)
model.to(args.device)
def learning_rate_schedule(epoch):
t = epoch / args.epochs
lr_ratio = 0.2
if t <= 0.5:
factor = 1.0
elif t <= 0.9:
factor = 1.0 - (1.0 - lr_ratio) * (t - 0.5) / 0.4
else:
factor = lr_ratio
return args.lr_init * factor
criterion = utils.cross_entropy
optimizer = torch.optim.SGD(
model.parameters(),
lr=args.lr_init,
momentum=args.momentum,
weight_decay=args.wd
)
start_epoch = 0
if args.resume is not None:
print("Resume training from %s" % args.resume)
checkpoint = torch.load(args.resume)
start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
columns = ['ep', 'lr', 'tr_loss', 'tr_acc', 'te_loss', 'te_acc', 'time']
utils.save_checkpoint(
args.dir,
start_epoch - 1,
state_dict=model.state_dict(),
optimizer_state=optimizer.state_dict()
)
test_res = {'loss': None, 'accuracy': None}
for epoch in range(start_epoch, args.epochs):
time_ep = time.time()
lr = learning_rate_schedule(epoch)
utils.adjust_learning_rate(optimizer, lr)
train_res = utils.train_epoch(loaders['train'], model, criterion, optimizer, cuda=use_cuda)
test_res = utils.eval(loaders['test'], model, criterion, cuda=use_cuda)
if epoch % args.save_freq == 0:
utils.save_checkpoint(
args.dir,
epoch,
state_dict=model.state_dict(),
optimizer_state=optimizer.state_dict()
)
time_ep = time.time() - time_ep
values = [epoch + 1, lr, train_res['loss'], train_res['accuracy'], test_res['loss'],
test_res['accuracy'], time_ep]
table = tabulate.tabulate([values], columns, tablefmt='simple', floatfmt='9.4f')
if epoch % 40 == 1 or epoch == start_epoch:
table = table.split('\n')
table = '\n'.join([table[1]] + table)
else:
table = table.split('\n')[2]
print(table)
if args.epochs % args.save_freq != 0:
utils.save_checkpoint(
args.dir,
args.epochs,
state_dict=model.state_dict(),
optimizer_state=optimizer.state_dict()
)