-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
428 lines (376 loc) · 22.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import numpy as np
import torch
from torch import BoolTensor, LongTensor
import os
from read_data import prepare_data, domain_slot_list, domain_slot_type_map, SampleDataset
from model import HistorySelectionModel
from config import args, DEVICE, medium_result_template, evaluation_folder, ckpt_template, logger
import pickle
import torch.multiprocessing as mp
from torch import nn
from tqdm import tqdm
from collections import OrderedDict
from evaluation import reconstruct_prediction_train, batch_eval, comprehensive_eval,\
evaluation_test_eval, mentioned_slot_update
from transformers import get_linear_schedule_with_warmup, AdamW
PROCESS_GLOBAL_NAME = args['process_name']
use_multi_gpu = args['multi_gpu']
overwrite = args['overwrite_cache']
start_epoch = args['start_epoch']
predefined_ckpt_path = args['load_ckpt_path']
mode = args['mode']
train_epoch = args['epoch']
warmup_proportion = args['warmup_proportion']
lr = args['learning_rate']
adam_epsilon = args['adam_epsilon']
max_grad_norm = args['max_grad_norm']
mentioned_slot_pool_size = args['mentioned_slot_pool_size']
pretrained_model = args['pretrained_model']
gate_weight = float(args['gate_weight'])
span_weight = float(args['span_weight'])
classify_weight = float(args['classify_weight'])
mentioned_weight = float(args['mentioned_weight'])
weight_decay = args['weight_decay']
write_all_prediction = args['write_all_prediction']
def train(model, name, train_loader, dev_loader, test_loader, train_loader_1, slot_index_value_dict,
slot_value_index_dict, local_rank=None):
max_step = len(train_loader) * train_epoch
num_warmup_steps = int(len(train_loader) * train_epoch * warmup_proportion)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=lr, eps=adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps,
num_training_steps=max_step)
global_step = 0
current_process_ckpt_path = None
for epoch in range(train_epoch):
logger.info("Epoch :{}".format(epoch))
if use_multi_gpu:
train_loader.sampler.set_epoch(epoch)
epoch_result = []
# Run the train function
if mode == 'train':
model.train()
full_loss = 0
for train_batch in tqdm(train_loader):
global_step += 1
if global_step < start_epoch * len(train_loader):
scheduler.step()
continue
if not use_multi_gpu:
train_batch = data_device_alignment(train_batch, DEVICE)
else:
train_batch = data_device_alignment(train_batch, local_rank)
predict_gate_dict, predict_value_dict, predict_mentioned_slot_dict = model(train_batch)
loss, train_batch_predict_label_dict = train_compute_loss_and_batch_eval(
predict_gate_dict, predict_value_dict, predict_mentioned_slot_dict, train_batch,
slot_index_value_dict, local_rank)
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
scheduler.step()
full_loss += loss.detach().item()
epoch_result.append(batch_eval(train_batch_predict_label_dict, train_batch))
# for possible CUDA out of memory
del loss, predict_gate_dict, predict_value_dict, predict_mentioned_slot_dict, train_batch
logger.info('average loss of epoch: {}: {}'.format(epoch, full_loss / len(train_loader)))
if use_multi_gpu:
file_path = medium_result_template.format('train', PROCESS_GLOBAL_NAME, epoch, local_rank)
pickle.dump(epoch_result, open(file_path, 'wb'))
torch.distributed.barrier()
if local_rank == 0:
result_list = load_result_multi_gpu('train', epoch)
result_print(comprehensive_eval(result_list, 'train', PROCESS_GLOBAL_NAME, epoch))
torch.distributed.barrier()
else:
result_print(comprehensive_eval(epoch_result, 'train', PROCESS_GLOBAL_NAME, epoch))
# save model
if (use_multi_gpu and local_rank == 0) or not use_multi_gpu:
current_process_ckpt_path = ckpt_template.format(PROCESS_GLOBAL_NAME, epoch)
save_model(use_multi_gpu, model, current_process_ckpt_path, local_rank)
if use_multi_gpu:
torch.distributed.barrier()
# validation and test,此处因为原始数据需要顺序输入,写多卡会非常麻烦,因此只使用单卡
if (use_multi_gpu and local_rank == 0) or not use_multi_gpu:
if use_multi_gpu:
assert local_rank is not None
rank = local_rank
target_device = local_rank
else:
rank = None
target_device = DEVICE
if mode != 'train':
assert current_process_ckpt_path is None and predefined_ckpt_path is not None
eval_model = HistorySelectionModel(name, pretrained_model, slot_value_index_dict,
local_rank=rank)
eval_model = eval_model.cuda(target_device)
eval_model.get_common_token_embedding(slot_value_index_dict)
load_model(multi_gpu=use_multi_gpu, model=eval_model, ckpt_path=predefined_ckpt_path,
local_rank=rank)
else:
assert current_process_ckpt_path is not None
eval_model = HistorySelectionModel(name, pretrained_model, slot_value_index_dict,
local_rank=rank)
eval_model = eval_model.cuda(target_device)
eval_model.get_common_token_embedding(slot_value_index_dict)
load_model(multi_gpu=use_multi_gpu, model=eval_model, ckpt_path=current_process_ckpt_path,
local_rank=rank)
logger.info('start evaluation in dev dataset, epoch: {}'.format(epoch))
model_eval(eval_model, dev_loader, 'dev', epoch, slot_index_value_dict, write_all_prediction,
target_device)
logger.info('start evaluation in test dataset, epoch: {}'.format(epoch))
model_eval(eval_model, test_loader, 'test', epoch, slot_index_value_dict, write_all_prediction,
target_device)
# logger.info('start evaluation in train dataset, epoch: {}'.format(epoch))
# model_eval(eval_model, train_loader_1, 'train', epoch, slot_index_value_dict, target_device)
if use_multi_gpu:
logger.info('epoch finished, process: {}, before barrier'.format(local_rank))
torch.distributed.barrier()
logger.info('epoch finished, process: {}, after barrier'.format(local_rank))
def save_model(multi_gpu, model, ckpt_path, local_rank=None):
if multi_gpu:
if local_rank == 0:
torch.save(model.state_dict(), ckpt_path)
else:
torch.save(model.state_dict(), ckpt_path)
logger.info('save model success')
def load_model(multi_gpu, model, ckpt_path, local_rank=None):
if multi_gpu:
map_location = {'cuda:%d' % 0: 'cuda:%d' % local_rank}
state_dict = torch.load(ckpt_path, map_location=map_location)
new_state_dict = OrderedDict()
for key in state_dict:
if 'module.' in key:
new_state_dict[key.replace('module.', '')] = state_dict[key]
else:
new_state_dict[key] = state_dict[key]
model.load_state_dict(new_state_dict)
else:
assert local_rank is None
state_dict = torch.load(ckpt_path, map_location=torch.device(DEVICE))
new_state_dict = OrderedDict()
for key in state_dict:
if 'module.' in key:
new_state_dict[key.replace('module.', '')] = state_dict[key]
else:
new_state_dict[key] = state_dict[key]
model.load_state_dict(new_state_dict)
logger.info('load model success')
def data_device_alignment(batch, target_device):
batch = list(batch)
# 0 sample id, 1 active domain, 2 active slot, 3 context, 4 context mask, 5 true label, 6 hit type,
# 7 mentioned_id, 8 hit value, 9 mentioned slot, 10 mentioned slot mask
batch[1] = batch[1].to(target_device)
batch[2] = batch[2].to(target_device)
batch[3] = batch[3].to(target_device)
batch[4] = batch[4].to(target_device)
for key in batch[5]:
batch[6][key] = batch[6][key].to(target_device)
batch[7][key] = batch[7][key].to(target_device)
batch[10][key] = batch[10][key].to(target_device)
return batch
def result_print(comprehensive_result):
for line in comprehensive_result:
logger.info(line)
def train_compute_loss_and_batch_eval(predict_gate_dict, predict_value_dict, predict_mentioned_slot_dict, train_batch,
slot_index_value_dict, local_rank=None):
# 0 sample id, 1 active domain, 2 active slot, 3 context, 4 context mask, 5 true label, 6 hit type,
# 7 mentioned_id, 8 hit value, 9 mentioned slot, 10 mentioned slot mask, 11 str mentioned
predict_dict = {}
target_device = local_rank if use_multi_gpu else DEVICE
cross_entropy = nn.CrossEntropyLoss(ignore_index=-1).to(target_device)
if local_rank is not None:
cross_entropy = cross_entropy.cuda(local_rank)
gate_loss, classify_loss, mentioned_loss, span_loss = 0, 0, 0, 0
for domain_slot in domain_slot_list:
predict_hit_type = predict_gate_dict[domain_slot].to(target_device)
predict_value = predict_value_dict[domain_slot].to(target_device)
predict_mentioned_slot = predict_mentioned_slot_dict[domain_slot].to(target_device)
label_hit_type = train_batch[6][domain_slot].to(target_device)
label_value = train_batch[8][domain_slot].to(target_device)
label_mentioned_slot = train_batch[7][domain_slot].to(target_device)
predict_dict[domain_slot] = reconstruct_prediction_train(domain_slot, predict_hit_type, predict_value,
predict_mentioned_slot, train_batch,
slot_index_value_dict)
gate_loss += cross_entropy(predict_hit_type, label_hit_type)
mentioned_loss += cross_entropy(predict_mentioned_slot, label_mentioned_slot)
if domain_slot_type_map[domain_slot] == 'span':
pred_start, pred_end = predict_value[:, :, 0], predict_value[:, :, 1]
label_start, label_end = label_value[:, 0], label_value[:, 1]
span_loss += (cross_entropy(pred_start, label_start) + cross_entropy(pred_end, label_end)) / 2
else:
assert domain_slot_type_map[domain_slot] == 'classify'
classify_loss += cross_entropy(predict_value, label_value)
loss = gate_weight*gate_loss + classify_weight*classify_loss + mentioned_weight*mentioned_loss + \
span_weight*span_loss
return loss, predict_dict
def model_eval(model, data_loader, data_type, epoch, slot_index_value_dict, write_all_prediction, local_rank=None):
# eval的要比train麻烦很多。在train中,我们可以默认知道每个上一轮的mentioned slot真值。但是在dev和test中,这个值是不知道的
# 因此,在dev和test中。我们只能采取顺序采样,每次只输入一个sample,实时更新预测的mentioned slot,然后迭代进入模型。
# 这意味着,在eval模式下,每一个sample的state是动态决定的
# 在测试时,需要将batch中的mentioned slots真值替换为为模型预测值,以确保测试公平性
# 注意,此处动态设定mentioned slot list后,batch中原有的hit type, hit value事实上全部失效了,我们最终比的只有label是否相等
model.eval()
result_list = []
last_mentioned_slot_dict, last_mentioned_mask_dict, last_str_mentioned_slot_dict, last_sample_id = {}, {}, {}, ''
full_prediction = {}
with torch.no_grad():
for batch in tqdm(data_loader):
if not use_multi_gpu:
batch = data_device_alignment(batch, DEVICE)
else:
batch = data_device_alignment(batch, local_rank)
# 当id 更新时,需要提前重置last sample id与相应的其他内容
current_sample_id = batch[0][0].lower().split('.json')[0].strip()
if current_sample_id not in full_prediction:
full_prediction[current_sample_id] = list()
if current_sample_id != last_sample_id:
last_sample_id = current_sample_id
last_mentioned_slot_dict, last_mentioned_mask_dict, last_str_mentioned_slot_dict = {}, {}, {}
for domain_slot in domain_slot_list:
last_mentioned_slot_dict[domain_slot] = \
[[[1], [1], [1], [1], [1]] for _ in range(mentioned_slot_pool_size)]
last_mentioned_mask_dict[domain_slot] = [True] + (mentioned_slot_pool_size - 1) * [False]
last_str_mentioned_slot_dict[domain_slot] = \
[['<pad>', '<pad>', '<pad>', '<pad>', '<pad>'] for _ in range(mentioned_slot_pool_size)]
# 此处的主要目标是建模inform的mentioned slot
last_mentioned_slot_dict, last_mentioned_mask_dict, last_str_mentioned_slot_dict = \
inform_mentioned_slot_update(last_mentioned_slot_dict, last_mentioned_mask_dict,
last_str_mentioned_slot_dict, batch)
assert len(batch[0]) == 1
for domain_slot in domain_slot_list:
if not use_multi_gpu:
batch[10][domain_slot] = BoolTensor([last_mentioned_mask_dict[domain_slot]]).to(DEVICE)
else:
batch[10][domain_slot] = BoolTensor([last_mentioned_mask_dict[domain_slot]]).to(local_rank)
batch[9][domain_slot] = [last_mentioned_slot_dict[domain_slot]]
batch[11][domain_slot] = [last_str_mentioned_slot_dict[domain_slot]]
# 使用真值进行判断
# last_str_mentioned_slot_dict[domain_slot] = batch[11][domain_slot][0]
# last_mentioned_slot_dict[domain_slot] = batch[9][domain_slot][0]
# last_mentioned_mask_dict[domain_slot] = batch[10][domain_slot][0].cpu().detach().numpy()
predict_gate_dict, predict_value_dict, predict_mentioned_slot_dict = model(batch)
batch_predict_label_dict, last_sample_id, last_mentioned_slot_dict, last_mentioned_mask_dict, \
last_str_mentioned_slot_dict = evaluation_test_eval(
predict_gate_dict, predict_value_dict, predict_mentioned_slot_dict, batch,
slot_index_value_dict, last_mentioned_slot_dict, last_sample_id,
last_mentioned_mask_dict, last_str_mentioned_slot_dict)
full_prediction[current_sample_id].append(
prediction_record_tuple(predict_gate_dict, batch, batch_predict_label_dict))
result_list.append(batch_eval(batch_predict_label_dict, batch))
result_print(comprehensive_eval(result_list, data_type, PROCESS_GLOBAL_NAME, epoch))
# if write_all_prediction:
# pickle.dump(full_prediction, open(full_result_name, 'wb'))
logger.info('model eval, data: {}, epoch: {} finished'.format(data_type, epoch))
def prediction_record_tuple(predict_gate, batch, batch_predict_label):
# 注意,按照设计,这个函数只会在推断时被使用,batch size一定为1
label_value = {domain_slot: batch[5][domain_slot][0] for domain_slot in domain_slot_list}
label_gate = {domain_slot: batch[6][domain_slot].to('cpu').detach().numpy()[0] for domain_slot in domain_slot_list}
predict_value = {domain_slot: batch_predict_label[domain_slot][0] for domain_slot in domain_slot_list}
predict_gate = {domain_slot: np.argmax(predict_gate[domain_slot]) for domain_slot in domain_slot_list}
single_turn_result = {}
for domain_slot in domain_slot_list:
single_turn_result[domain_slot] = {'label_value': label_value[domain_slot],
'label_gate': label_gate[domain_slot],
'predict_value': predict_value[domain_slot],
'predict_gate': predict_gate[domain_slot]}
return single_turn_result
def inform_mentioned_slot_update(mentioned_slot_dict, mentioned_mask_dict, str_mentioned_slot_dict, batch):
# 此处的主要目标是建模inform的mentioned slot
# 我们可以假定inform最多inform一次
# 即替换batch中的9,10,11项为上一轮的结果和本轮中inform真值,我们假定inform时不会存在同类型slot传递这回事情
# (比如Inform了宾馆的地点结果用户说我选这个地方的饭店)。必须完全匹配。
# 由于我们知道系统的行为,因此,我们可以合理的利用当前轮次mentioned slot真值中所有的inform信息
# 我们这里只保留本轮的inform值,我们假定最近一轮的对话中系统不会同时给出两个inform,因此最后一次inform要不是本轮刚提出的
# 要不就是之前的(会在Update时只取一次)
turn_idx = str(int(batch[0][0].split('-')[1]))
valid_idx_dict = {}
for domain_slot in domain_slot_list:
target_domain, target_slot = domain_slot.split('-')[0], domain_slot.split('-')[-1]
# 按照设定,inform mentioned必须保证domain slot完全一致,因此按照设计不会出现target domain slot和source domain slot不一样的
# 问题,因此此处只需要参考target domain slot即可
mentioned_slot_list = batch[11][domain_slot][0]
for index in range(len(mentioned_slot_list)):
mentioned_slot = batch[11][domain_slot][0][index]
if mentioned_slot[1] == 'inform' and mentioned_slot[0] == turn_idx and mentioned_slot[2] == target_domain \
and mentioned_slot[3] == target_slot:
valid_idx_dict[domain_slot] = index
break
inform_label_dict = {domain_slot: ['none'] for domain_slot in domain_slot_list}
for domain_slot in domain_slot_list:
if domain_slot in valid_idx_dict:
inform_label_dict[domain_slot] = [batch[11][domain_slot][0][valid_idx_dict[domain_slot]][4]]
mentioned_slot_dict, mentioned_mask_dict, str_mentioned_slot_dict = mentioned_slot_update(
turn_idx, inform_label_dict, mentioned_slot_dict, mentioned_mask_dict,
str_mentioned_slot_dict, 'inform')
return mentioned_slot_dict, mentioned_mask_dict, str_mentioned_slot_dict
def load_result_multi_gpu(data_type, epoch):
file_list, target_file_list = os.listdir(evaluation_folder), []
key_name = (data_type + '_' + PROCESS_GLOBAL_NAME + '_' + str(epoch)).strip()
for file_name in file_list:
if key_name in file_name:
target_file_list.append(file_name)
assert len(target_file_list) == torch.cuda.device_count()
result_list = []
for file_name in target_file_list:
batch_result = pickle.load(open(os.path.join(evaluation_folder, file_name), 'rb'))
for sample_result in batch_result:
result_list.append(sample_result)
return result_list
def single_gpu_main(pass_info):
slot_value_index_dict, slot_index_value_dict, train_loader, dev_loader, test_loader, train_loader_1 = \
prepare_data(overwrite=overwrite)
pretrained_model_, name = pass_info
model = HistorySelectionModel(name, pretrained_model_, slot_value_index_dict)
model = model.cuda(DEVICE)
# 注意,这一步必须在模型置cuda后手工立即进行
model.get_common_token_embedding(slot_value_index_dict)
if os.path.exists(predefined_ckpt_path):
load_model(use_multi_gpu, model, predefined_ckpt_path)
train(model, name, train_loader, dev_loader, test_loader, train_loader_1,
slot_index_value_dict, slot_value_index_dict)
def multi_gpu_main(local_rank, _, pass_info):
pretrained_model, name = pass_info
num_gpu = torch.cuda.device_count()
logger.info('GPU count: {}'.format(num_gpu))
torch.distributed.init_process_group(backend="nccl", init_method='tcp://127.0.0.1:23456', world_size=num_gpu,
rank=local_rank)
slot_value_index_dict, slot_index_value_dict, train_loader, dev_loader, test_loader, train_loader_1 = \
prepare_data(overwrite)
logger.info('world size: {}'.format(torch.distributed.get_world_size()))
local_rank = torch.distributed.get_rank()
logger.info('local rank: {}'.format(local_rank))
# DEVICE = torch.device("cuda", local_rank)
torch.cuda.set_device(local_rank)
model = HistorySelectionModel(name, pretrained_model, slot_value_index_dict, local_rank)
model = model.cuda(local_rank) # 将模型拷贝到每个gpu上
# 注意,这一步必须在模型置cuda后手工立即进行
model.get_common_token_embedding(slot_value_index_dict)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True)
if os.path.exists(predefined_ckpt_path):
load_model(use_multi_gpu, model, predefined_ckpt_path, local_rank)
train(model, name, train_loader, dev_loader, test_loader, train_loader_1,
slot_index_value_dict, slot_value_index_dict, local_rank)
def main():
pass_info = pretrained_model, PROCESS_GLOBAL_NAME
logger.info('start training')
if use_multi_gpu:
num_gpu = torch.cuda.device_count()
mp.spawn(multi_gpu_main, nprocs=num_gpu, args=(num_gpu, pass_info))
else:
single_gpu_main(pass_info)
if __name__ == '__main__':
args_list = []
for item in args:
args_list.append([item, args[item]])
args_list = sorted(args_list, key=lambda x: x[0])
for item in args_list:
logger.info('{} value: {}'.format(item[0], item[1]))
main()