diff --git a/README.md b/README.md index cc7a069..f56071f 100644 --- a/README.md +++ b/README.md @@ -5,19 +5,19 @@ Table of Contents * [Introduction](#introduction) * [Performance](#performance) - * [Datasets](#datasets) - * [Compared Algorithms](#compared-algorithms) - * [Results](#results) + * [Datasets](#datasets) + * [Compared Algorithms](#compared-algorithms) + * [Results](#results) * [Building Instruction](#building-instruction) - * [Prerequisites](#prerequisites) - * [Compile On Ubuntu/Debian](#compile-on-ubuntudebian) - * [(Optional) Docker Usage](#optional-docker-usage) + * [Prerequisites](#prerequisites) + * [Compile On Ubuntu/Debian](#compile-on-ubuntudebian) + * [(Optional) Docker Usage](#optional-docker-usage) * [Usage](#usage) - * [Building NSG Index](#building-nsg-index) - * [Searching via NSG Index](#searching-via-nsg-index) + * [Building NSG Index](#building-nsg-index) + * [Searching via NSG Index](#searching-via-nsg-index) * [Parameters used in Our Paper](#parameters-used-in-our-paper) - * [NSG Building](#nsg-building) - * [Pre-built kNN Graph and NSG Index](#pre-built-knn-graph-and-nsg-index) + * [NSG Building](#nsg-building) + * [Pre-built kNN Graph and NSG Index](#pre-built-knn-graph-and-nsg-index) * [Performance on Taobao's E-commerce Data](#performance-on-taobaos-e-commerce-data) * [Reference](#reference) * [TODO](#todo) @@ -35,8 +35,8 @@ NSG has been intergrated into the search engine of Taobao (Alibaba Group) for bi + [SIFT1M and GIST1M](http://corpus-texmex.irisa.fr/) + Synthetic datasets: RAND4M and GAUSS5M - - RAND4M: 4 million 128-dimension vectors sampled from a uniform distribution of [-1, 1]. - - GAUSS5M: 5 million 128-dimension vectors sampled from a gaussion ditribution N(0,3). + - RAND4M: 4 million 128-dimension vectors sampled from a uniform distribution of [-1, 1]. + - GAUSS5M: 5 million 128-dimension vectors sampled from a gaussion ditribution N(0,3). ### Compared Algorithms @@ -223,8 +223,8 @@ We use [efanna_graph](https://github.com/ZJULearning/efanna_graph) to build the + Commands: ```shell -$ efanna_graph/tests/test_nndescent sift.fvecs sift_200nn.graph 200 200 10 10 100 # SIFT1M -$ efanna_graph/tests/test_nndescent gist.fvecs gist_400nn.graph 400 400 12 15 100 # GIST1M +$ efanna_graph/tests/test_nndescent sift.fvecs sift_200nn.graph 200 200 10 10 100 # SIFT1M +$ efanna_graph/tests/test_nndescent gist.fvecs gist_400nn.graph 400 400 12 15 100 # GIST1M ``` #### Step 2. Convert kNN Graph to NSG @@ -238,8 +238,8 @@ $ efanna_graph/tests/test_nndescent gist.fvecs gist_400nn.graph 400 400 12 15 10 + Commands: ```shell -$ nsg/build/tests/test_nsg_index sift.fvecs sift_200nn.graph 40 50 500 sift.nsg # SIFT1M -$ nsg/build/tests/test_nsg_index gist.fvecs gist_400nn.graph 60 70 500 gist.nsg # GIST1M +$ nsg/build/tests/test_nsg_index sift.fvecs sift_200nn.graph 40 50 500 sift.nsg # SIFT1M +$ nsg/build/tests/test_nsg_index gist.fvecs gist_400nn.graph 60 70 500 gist.nsg # GIST1M ``` ### Pre-built kNN Graph and NSG Index @@ -247,11 +247,11 @@ $ nsg/build/tests/test_nsg_index gist.fvecs gist_400nn.graph 60 70 500 gist.nsg Here we also provide our pre-built kNN graph and NSG index files used in our papar's experiments. - kNN Graph: - + SIFT1M - [sift_200nn.graph](http://downloads.zjulearning.org:8081/nsg/sift_200nn.graph) - + GIST1M - [gist_400nn.graph](http://downloads.zjulearning.org:8081/nsg/gist_400nn.graph) + + SIFT1M - [sift_200nn.graph](http://downloads.zjulearning.org.cn/nsg/sift_200nn.graph) + + GIST1M - [gist_400nn.graph](http://downloads.zjulearning.org.cn/nsg/gist_400nn.graph) - NSG Index: - + SIFT1M - [sift.nsg](http://downloads.zjulearning.org:8081/nsg/sift.nsg) - + GIST1M - [gist.nsg](http://downloads.zjulearning.org:8081/nsg/gist.nsg) + + SIFT1M - [sift.nsg](http://downloads.zjulearning.org.cn/nsg/sift.nsg) + + GIST1M - [gist.nsg](http://downloads.zjulearning.org.cn/nsg/gist.nsg) ## Performance on Taobao's E-commerce Data