Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

run error #2

Open
mathpopo opened this issue Mar 27, 2022 · 2 comments
Open

run error #2

mathpopo opened this issue Mar 27, 2022 · 2 comments

Comments

@mathpopo
Copy link

stty: 标准输入: 对设备不适当的 ioctl 操作
Traceback (most recent call last):
File "/home/chenxin/disk1/github/MQBench_Quantize/main.py", line 21, in
from utils import progress_bar, choose_model, choose_backend
File "/home/chenxin/disk1/github/MQBench_Quantize/utils.py", line 49, in
_, term_width = os.popen('stty size', 'r').read().split()
ValueError: not enough values to unpack (expected 2, got 0)

@mathpopo
Copy link
Author

use WuJie1010/Facial-Expression-Recognition.Pytorch#1 can run

but

Traceback (most recent call last):
File "/home/chenxin/disk1/github/MQBench_Quantize/main.py", line 170, in
net = choose_model(args)
File "/home/chenxin/disk1/github/MQBench_Quantize/utils.py", line 152, in choose_model
return ShuffleNetG2()
File "/home/chenxin/disk1/github/MQBench_Quantize/models/shufflenet.py", line 92, in ShuffleNetG2
return ShuffleNet(cfg)
File "/home/chenxin/disk1/github/MQBench_Quantize/models/shufflenet.py", line 61, in init
self.layer1 = self._make_layer(out_planes[0], num_blocks[0], groups)
File "/home/chenxin/disk1/github/MQBench_Quantize/models/shufflenet.py", line 71, in _make_layer
layers.append(Bottleneck(self.in_planes, out_planes-cat_planes, stride=stride, groups=groups))
File "/home/chenxin/disk1/github/MQBench_Quantize/models/shufflenet.py", line 29, in init
self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 388, in init
False, _pair(0), groups, bias, padding_mode)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 107, in init
out_channels, in_channels // groups, *kernel_size))
TypeError: new() received an invalid combination of arguments - got (float, int, int, int), but expected one of:

  • (*, torch.device device)
  • (torch.Storage storage)
  • (Tensor other)
  • (tuple of ints size, *, torch.device device)
  • (object data, *, torch.device device)

Process finished with exit code 1

@mathpopo
Copy link
Author

does mqbench0.02 version cannot support these?

main.py ShuffleNetV2 --quantize
==> Preparing data..
Files already downloaded and verified
Files already downloaded and verified
==> Building model..
[MQBENCH] INFO: Quantize model using BackendType.Tensorrt scheme.
[MQBENCH] INFO: Weight Qconfig:
FakeQuantize: LearnableFakeQuantize Params: {}
Oberver: MinMaxObserver Params: Symmetric: True / Bitwidth: 8 / Per channel: True / Pot scale: False
[MQBENCH] INFO: Activation Qconfig:
FakeQuantize: LearnableFakeQuantize Params: {}
Oberver: EMAMinMaxObserver Params: Symmetric: True / Bitwidth: 8 / Per channel: False / Pot scale: False
Traceback (most recent call last):
File "/home/chenxin/disk1/github/MQBench_Quantize/main.py", line 201, in
net = prepare_qat_fx_by_platform(net, backend)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/MQBench-0.0.2-py3.7.egg/mqbench/prepare_by_platform.py", line 257, in prepare_qat_fx_by_platform
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/fx/symbolic_trace.py", line 605, in symbolic_trace
graph = tracer.trace(root, concrete_args)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/fx/symbolic_trace.py", line 354, in trace
self.create_node('output', 'output', (self.create_arg(fn(*args)),), {},
File "/home/chenxin/disk1/github/MQBench_Quantize/models/shufflenetv2.py", line 124, in forward
out = self.layer1(out)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/fx/symbolic_trace.py", line 343, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/fx/symbolic_trace.py", line 222, in call_module
return forward(*args, **kwargs)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/fx/symbolic_trace.py", line 339, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward
input = module(input)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/fx/symbolic_trace.py", line 343, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/fx/symbolic_trace.py", line 222, in call_module
return forward(*args, **kwargs)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/fx/symbolic_trace.py", line 339, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/chenxin/disk1/github/MQBench_Quantize/models/shufflenetv2.py", line 49, in forward
x1, x2 = self.split(x)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/fx/symbolic_trace.py", line 343, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/fx/symbolic_trace.py", line 222, in call_module
return forward(*args, **kwargs)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/fx/symbolic_trace.py", line 339, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/home/chenxin/disk1/anaconda3/envs/MQBench_Quantize/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/chenxin/disk1/github/MQBench_Quantize/models/shufflenetv2.py", line 28, in forward
c = int(x.size(1) * self.ratio)
TypeError: int() argument must be a string, a bytes-like object or a number, not 'Proxy'

Process finished with exit code 1

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant